
Chapter 1

Representations of finite groups

In this chapter we give the basic definitions of representation theory, and then
look a bit closer to the representations of finite groups. We introduce the notion
of characters as a basic tool for the study of these representations.

1.1 Definitions

A representation of a group G on a finite-dimensional complex vector space V
is a group homomorphism ρ : G → GL(V ). If G has some additional structure
like topological space, complex variety or a real manifold, we ask that ρ is a
corresponding morphism: a continuous map, a polynomial map or a smooth
map.

A representation of a complex algebra A is an algebramorphism ρ : G → End(V )
We say that such a map gives V the structure of an A-module. When there is
little ambiguity about the map ρ, we sometimes call V itself a representation of
A. For any element x ∈ A, v ∈ V we will shorten ρ(x)v to x ·v or xv. If A is finite
dimensional it can be considered as a representation of itself, this representation
will be called the regular representation.

If G is a discrete topological group (e.g. finite groups) we can construct the group
algebra CG. This is the complex vector space with as basis the group elements
and with as multiplication the bilinear extension of the group multiplication.
Every representation of such a group extends linearly to a unique representation
of the group algebra and vice versa every representation of the group algebra can
be restricted to the basis elements to obtain a group representation.

A morphism φ between two representations ρV and ρW is a vector space map
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CHAPTER 1. REPRESENTATIONS OF FINITE GROUPS

φ : V → W such that the following diagram is commutative

V
φ //

ρV (x)

��

W

ρW (x)

��
V

φ // W.

In short we can also write φ(xv) = xφ(v). A morphism is also sometimes called
an A-linear map. The set of A-linear maps is denoted by HomA(V,W ).

A subrepresentation of V is a subspaceW such that x·W ⊂ W for all x ∈ A. Note
that a morphism maps subrepresentations to subrepresentations so in particular
for any morphism φ the spaces Kerφ and Imφ are subrepresentations.

A representation V is called simple if its only subrepresentations are 0 and V . If
V and W are representations we can construct new representations from them:
the direct sum V ⊕ W = {(v, w)|v ∈ V,w ∈ W} has a componentwise action
x(v, w) = (xv, xw). A representation that is not isomorphic to the direct sum of
two non-trivial representations is called indecomposable. If a representation is a
direct sum of simple representations it is called semisimple.

If we are considering only group representations we can construct even more new
representations:

• The tensor product V ⊗W = Span(vi ⊗ wj|(vi), (wj) are bases for V, W)
has as action x(v ⊗ w) = gv ⊗ gw.

• The dual space V ∗ = {f : V → C|f is linear} has a contragradient action:
(g · f)v = f(g−1 · v).

• The space of linear maps Hom(V,W ) can be identified with V ∗ ⊗W and
hence the action is (g · f)v = g · (f(g−1 · v)). Note that this means that the
elements of HomA(V,W ) are in fact the maps that are invariant under the
action of A.

The main topic that representation theory is concerned with is to classify all
simple and indecomposable representations. In the next sections we will do this
for finite groups.

1.2 Reductivity

In this section we will proof that all indecomposable representations of a finite
group are in fact simple. This will allow use to decompose every representation
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CHAPTER 1. REPRESENTATIONS OF FINITE GROUPS

as a unique direct sum of simple representations. Using this fact we will also give
a description of HomA(V,W ) for general representations. A group which has this
above property is called a reductive group.

Theorem 1.1. Let G be a finite group and V a representation of G. If W is a
subrepresentation of V then there exists a subrepresentation W⊥ such that V =
W ⊕W⊥.

Proof. Let π : V → W be a projection of V onto W . This is a surjective map
such that ∀w ∈ W : π(x) = x. Using this π we define a new map

πG : V → W : v 7→ 1

|G|
∑
g∈G

g · (π(g−1v)).

This map is still surjective because

∀w ∈ W : πG(w) =
1

|G|
∑
g∈G

g(π(g−1w)) =
1

|G|
∑
g∈G

g((g−1w)) =
|G|
|G|

w = w.

This map is a morphism of representations

πG(hv) =
1

|G|
∑
g∈G

g · (π(g−1hv)) = h
1

|G|
∑

h−1g∈G

h−1g · (π(g−1hv)) = hπG(v).

So the image and the kernel of this map are subrepresentations and

V = ImπG ⊕ KerπG = W ⊕ KerπG.

Not every group has this property, we explicitely needed the finiteness of G to
define πG. For instance if G = Z this is not true any more: The representation

ρ : Z → GL2 : 1 7→
(

1 1
0 1

)
has only one nontrivial subrepresentation and hence it cannot be written as the
direct sum of two one dimensional subrepresentations.

So using the previous theorem, we can start from a representation V , take a
subrepresentation and split V in a direct sum V1 ⊕ V2. If these components are
not simple we can split them up again and again until we end up with a direct sum
of simples. We can reorder these simples to put all isomorphic simples together
so we can write

V ∼= S⊕e1
1 ⊕ · · · ⊕ S⊕ek

k .

To prove that this sum is unique up to permutation of the factors we need the
following important lemma.
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Lemma 1.2 (Schur). Let S and T be simple representations of a group G (or
an algebra A) then

HomG(S, T ) =

{
0 if S 6= T

C if S = T

Proof. If φ is a morphism then its image and kernel are subrepresentations so if
φ 6= 0 it must be both injective and surjective and hence an isomorphism.

Note that C ⊂ HomG(S, S) because every g acts linearly: g(λv) = λ(gv). If
φ ∈ HomG(S, S) we can find an eigenvalue λ of φ. The eigenspace with this
eigenvalue is a subrepresentation of S.

φ(v) = λv ⇒ φ(gv) = gφ(v) = g(λv) = λ(gv).

The eigenspace must be the whole of S so φ acts as a scalar on S.

Miniature 1: Issai Schur
Schur was born in Russia, in 1875 but spent most of his
youth in Latvia. In 1894 he enrolled in the University of
Berlin, studying math and physics. He received his doctor-
ate with honours in 1901 under supervision of Frobenius.
In 1913 he was appointed to succeed Felix Hausdorff as
professor at the University of Bonn. He was elected as a
member in the Berlin Academy in 1922. In 1938 he left and
attempted to immigrate to Palestine. He and his family es-
caped just days before an appointment with the Gestapo.
Soon after, on January 10, 1941, he had a heart attack and
died in Palestine. Issai Schur was the one of the great math-
ematicians that contributed significantly to representation
and character theory.

We can use this lemma to compute the HomG(V,W ) for general semisimple rep-
resentations:

Theorem 1.3. If V ∼= S⊕e1
1 ⊕ · · ·⊕S⊕ek

k and W ∼= V ∼= S⊕f1

1 ⊕ · · ·⊕S⊕fk

k , where
some of the e and f ′s can be zero, then

HomG(V,W ) = Matf1×e1(C)⊕ · · · ⊕Matfk×ek
(C).

Proof. For every term in the decomposition of V including the multiplicities we
have an embedding

ιij : Si → V : v 7→ 0⊕ · · · ⊕ 0⊕ v ⊕ · · · ⊕ 0
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and for every term in the decomposition of V including the multiplicities we have
a projection

πij : W → Si : w11 ⊕ . . . w1f1 ⊕ wk1 ⊕ . . . wkfk
7→ wij.

Every map πpqφιij is a morphism from Si → Sp so it is a scalar and it is 0 if i 6= k.
For every i we have an ei× fi-matrix of scalars πilφιim, so φ uniquely determines
an element of Matf1×e1(C)⊕ · · · ⊕Matfk×ek

(C).

On the other hand if ~M : (M1, . . . ,Mk) ∈ Matf1×e1(C)⊕ · · · ⊕Matfk×ek
(C) then

we can define a morphism

φM : ⊕k
i=1 ⊕

ei
j=1 vij 7→ ⊕k

i=1 ⊕
ei
j=1

∑
p

M i
jpvip.

A simple corollary of this theorem is that the decomposition is unique: if V ∼=
W ⇔ ∀i : ei = fi. This is because Matf1×e1(C) ⊕ · · · ⊕ Matfk×ek

(C) can only
contain invertible elements if ei = fi.

1.3 Characters

To classify representations up to isomorphism we need to associate certain objects
to representations that are invariant under isomorphisms. One example of such
objects are characters.

The character of a representation V is the map

χV : G → C : g 7→ TrρV (g).

As the trace is invariant under conjugation it follows immediately that if V ∼= W
then χV = χW . Also the character has the property that it has the same values
on the conjugacy classes in G:

χV (hgh−1) = Tr(ρV (h)ρV (g)ρV (h−1)) = Tr(ρV (h)ρV (g)ρV (h)−1) = TrρV (g) = χV (g)

One can also easily check the following identities:

• χV⊕W = χV + χW ,

• χV⊗W = χV · χW ,
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• χV ∗ = χ̄V . This follows because the eigenvalues of ρV ∗(g) = ρV (g−1)T

are roots of the unity as g|G| = 1 and hence the inverses are the complex
conjugates.

We can also extend the character linearly such that it is a map from the group
algebra to C. Now we can look at the value of the element

p =
1

|G|
∑
g∈G

g.

This element is an idempotent

p2 = (
1

|G|
∑
g∈G

g)2 =
1

|G|2
∑

g,h∈G

gh =
|G|
|G|2

∑
g∈G

g =
1

|G|
∑
g∈G

g = p

and for every h ∈ G

ph =
1

|G|
∑
g∈G

gh =
1

|G|
∑
gh∈G

gh =
1

|G|
∑
g∈G

g = p

This implies that for every representation V , ρV (p) is a G-linear projection and
the image of the projection are the G-invariant vectors of V . Recall that the trace
of a projection is the dimension of the image.

If we apply this to the representation Hom(V,W ) = V ∗ ⊗W we get

1

|G|
∑
g∈G

χV ∗⊗W (g) =
1

|G|
∑
g∈G

χ̄V (g)χW (g) = dim HomG(V,W ).

If we define an hermitian product on the space of complex functions on G by

〈f1, f2〉 =
1

|G|
∑
g∈G

f̄(g)f(g)

we get for representations in combination with theorem ??: if V ∼= S⊕e1
1 ⊕ · · · ⊕

S⊕ek
k and W ∼= S⊕f1

1 ⊕ · · · ⊕ S⊕fk

k

〈χV , χW 〉 = DimHomG(S, T ) = dim Matf1×e1(C)⊕· · ·⊕Matfk×ek
(C) = e1f1+. . . ekfk.

So the characters of simple representations are orthogonal with respect to this
hermitian product and if S is simple then 〈χV , S〉 is the multiplicity of S inside
V .

The characters all sit inside the subspace of functions G → C that are constant
along the conjugacy classes in G, these are called the class functions. The di-
mension of this space equals the number of conjugacy classes. The orthogonality
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conditions imply that the number of isomorphism classes of simple representa-
tions is not bigger than this dimension. We will now show that this number is
equal.

If this number is not equal this means that we can find a class function α that is
orthogonal to all the χS. Now define the element

a :=
1

|G|
∑
g∈G

ᾱ(g)g ∈ CG.

This function commutes with all g ∈ G and so for every simple representation S,
ρS(a) is a morphism and hence a scalar λ. By assumption

dimSλ = TrρS(a) =
1

|G|
∑
g∈G

ᾱ(g)χS(g) = 〈α, 〉 = 0.

This means that ρS(a) = 0 for all simple and hence for all representations.

Now we take as representation the regular representation of CG. The previous
paragraph tells us that a · x = 0 for ever element in CG. This is only possible if
a = 0 and thus α = 0.

Finally we can easily determine the character of the regular representation: the
identity element has character dim CG = |G|, all the other group elements have
character zero because they map no basis element to itself. So

〈χCG, S〉 = dimS and CG = Sdim S1
1 ⊕ · · · ⊕ Sdim Sk

k .

We can conclude

Theorem 1.4. Let G be a finite group then we have that

1. The number of isomorphism classes simple representations is the same as
the number of conjugacy classes in G.

2. The characters of the simple representation form an orthogonal basis for
the space of class functions.

3. If S is simple then 〈χV , S〉 is the multiplicity of S inside V .

4. V is completely determined by its character χV .

5. |G| = dim CG = dimSdim S1
1 ⊕ · · · ⊕ Sdim Sk

k = dimS2
1 + · · ·+ dimS2

k.
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1.4 The group algebra

In this last section we determine the structure of the group algebra.

Theorem 1.5. CG is a direct sum of matrix algebras:

CG ∼= End(S1)⊕ · · · ⊕ End(Sk)

Proof. Every simple representation Si gives a morphism ρSi
: CG → End(Si), so

we have a big morphism

ψ = ⊕iρSi
: CG → ⊕iEnd(Si) : x 7→ ⊕iρSi

(x).

The morphism ψ is an injection because if ψ(x) = 0 then ρS(x) = 0 for every
simple representation so also ρCG(x) = 0 and this implies that x = x · 1 = 0. Due
to the last part of the previous theorem we know that both the target and the
source of this morphism have the same dimension, so ψ is a bijection.

We can also calculate the orthogonal idempotents inside CG. These are the
elements that are of the form di = 0⊕ · · · ⊕ 0⊕ 1⊕ 0⊕ · · · ⊕ 0. The character of
di on the representation Si is dimSi and it is zero on all other representations.
The unique element that satisfies this requirement is di = dim Si

|G|
∑

g χ̄Si
g because

TrρSj
(di) =

dimSi

|G|
∑

g

χ̄Si
TrρSj

(g) = dimSi〈χSi
, χSj

〉.

We end with a nice identity

Theorem 1.6. EndCG(CG) ∼= CG

Proof. For every g we can define a morphism ϕg of CG as a representation

ϕg(h) := hg−1.

This is indeed a morphism because ϕg(h
′h) = h′hg−1 = h′(hg−1) = h′ϕg(h). Now

define the following linear map

ϕ : CG→ EndCG(CG) :
∑

g

αgg →
∑

g

αgϕg.

This map is an algebramorphism because ϕgh = ϕgϕh. The dimensions of source
and target of ϕ are again the same and ϕ is injective because if ϕ(

∑
g αgg) = 0

then 1 ·
∑

g αgg
−1 = 0 so ∀g ∈ G : αg = 0.
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1.5 Exercises

Calculate the character tables of the following groups:

1. S3, S4, S5 the permutation groups of 3, 4 and 5 elements.

2. Dn = 〈X, Y |X2 = 1, Y 2 = 1, (XY )n = 1〉,

3. Q8 = {±1,±i,±j,±k} ⊂ H.

1.5.1 Right or Wrong

Are the following statements right or wrong, if right prove them, if wrong disprove
or find a counterexample.

1. The number of one dimensional representations divides the order of the
group.

2. A one-dimensional representation of a nonabelian simple group (i.e. a group
without normal subgroups) is trivial.

3. A group with only one one-dimensional representation is simple.

4. The number of simple representations of the cartesian product of two groups
is the sum of simple representations of both groups apart.

5. It there is a nontrivial conjugacy class in G with one element, then this
element acts trivially on every simple representation of dimension > 1.

6. The characters of a simple 2-dimensional representation are real numbers.

7. For every two-dimensional representation there is an element with trace 0.

8. If a group has only one higherdimensional simple representation then it is
simple.

9. Nonabelian groups of order 8 have the same number of simple representa-
tions.

10. A group with only 2 simple representations is simple.
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11. If 3 characters in the affine space CG lie on the same line, then at least one
of them is not simple.

12. If one conjugacy class of G contains half of the elements of G then there is
a representation V such that V × V is trivial.

13. ∀g ∈ G : ‖χV (g)‖ ≤ dimV .

14. If G has a representation such that χ(g) = −1 if g 6= 1 then G = Z2.

15. If all simple representations have odd dimension then G is simple.

16. The number of twosided ideals in the group algebra is equal to the number
of conjugacy classes in G.

17. Two nonabelian groups with isomorphic group algebras are isomorphic.

18. Conjugation with an element of g is an endomorphism of the regular rep-
resentation.

19. For every couple of finite groups, there exists an algebra morphism CG →
CH.

20. Every group algebra can be mapped surjectively to an abelian algebra.
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Chapter 2

The representation variety

In this chapter we will consider representations of finitely generated algebras.
Let A be an algebra defined by a finite number of generators and relations. This
means that we can write A as a quotient of a free algebra:

A ∼= C〈Y1, . . . , Yk〉/R with R = (r1, . . . , rl).

We will write the generators of A as yi := Yi mod R.

2.1 RepnA

An n-dimensional representation of A can be seen as an algebra morphism ρ :
A → Matn×n(C). We will denote the set of n-dimensional representations as
RepnA. Every representation ρ is uniquely determined by the k-tuple of matrices
(ρ(y1), . . . , ρ(yk)) and therefore we can view RepnA as a subset of Matn×n(C)k =
Cn2k. On the other hand if we have a k-tuple of matrices (A1 . . . , Ak) that satisfies
the relations r1, . . . , rk, we can construct a morphism

ρ : A→ Matn×n(C) : yi 7→ Ai

This implies that we can consider RepnA as the closed subset of Cn2k where the
functions

fmij : Cn2k → C : (A1 . . . , Ak) 7→ [rm(A1 . . . , Ak)]ij

are zero ([rm(A1 . . . , Ak)]ij is the coefficient on the ith and the jth column of the
matrix rm(A1 . . . , Ak)). So RepnA is in fact an algebraic variety and its ring of
polynomial functions is of the form

C[RepnA] = C[xs
rt|1 ≤ s ≤ k 1 ≤ r, t ≤ n]/(fmij|1 ≤ s ≤ k 1 ≤ r, t ≤ n).
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The structure of RepnA does not depend on the specific set of generators of A.
Suppose we have another set of generators z1, . . . zm we can express these as
functions of the y1, . . . , yk and vica versa

zi = ζi(y1, . . . , yk), yi = ηi(z1, . . . , zm).

If Rep′nA ⊂ Cn2m is the subset of m-tuples (ρ(z1), . . . , ρ(zm)) we can define poly-
nomial maps

φ : RepnA→ Rep′nA : (A1, . . . , Ak) 7→ (ζ1(A1, . . . , Ak), . . . , ζm(A1, . . . , Ak))

φ′ : Rep′nA→ RepnA : (B1, . . . , Bm) 7→ (η1(B1, . . . , Bk), . . . , ζk(B1, . . . , Bm))

who are inverses of each other so Rep′nA and RepnA are isomorphic varieties.

Example 2.1. Finite group algebras are finitely genereated algebras f.i.

• C[Zn] ∼= C[X]/(Xn − 1),

• C[S3] = C〈X, Y 〉/(X2 − 1, Y 2 − 1, (XY )3 − 1),

• C[Q8] = C〈X, Y 〉/(X2−1, Y 2−X,Z2−X,XY−Y X,XZ−ZX, Y Z−XY Z).

If we take the simplest example A = C[Z2] = C[Y ]/(Y 2 − 1) and look at the two
dimensional representations

Rep2A =
{
B ∈ Mat2×2(C)|B2 = 1.

}
then the ring of polynomial functions is

C[Rep2A] ∼= C[y11, y12, y21, y22]/(y
2
11 + y12y21 − 1, y2

22 + y12y21 − 1,

y11y12 + y12y22, y21y11 + y22y21)

Choosing another generator Z =
√

2
2

(Y + 1) then A = C[Z]/(Z2 = Z) we obtain

Rep′2A =
{
B ∈ Mat2×2(C)|B2 = B.

}
and

C[Rep′2A] ∼= C[z11, z12, z21, z22]/(z
2
11 + z12z21 − z11, z

2
22 + z12z21 − z22,

z11z12 + z12z22 − z12, z21z11 + z22z21 − z21)

The two rings C[Rep2A] and C[Rep′2A] are isomorphic by the identification

zij =

{√
2

2
(yij + 1) i = j

√
2

2
yij i 6= j.

A further invesigation shows that RepnA consists of 3 connected components n.l.
2 points ( 1 0

0 1 ),
( −1 0

0 −1

)
and a quadric {( a b

c −a ) |a2 − bc = 1}.
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2.2 The GLn-action

We recall that an action of a group G on a set X is a map G×X → X : (g, x) 7→
g · x such that g1 · (g2 · x) = (g1g2) · x. The orbit of a point x in X is defined as
the set Ox = Gx = {g · x|g ∈ G}.

On the set of k-tupels of matrices we have an action of the linear group GLn by
simultaneous conjugation:

α · (A1, . . . , Ak) := (αA1α
−1, . . . , αAkα

−1).

As we have seen in the previous lesson two n-dimensional representations ρ1 and
ρ2 are isomorphic if there is an invertible linear map α ∈ GLn such that ∀x ∈ A :
αρ1(x) = ρ2(x)α. It suffices that the last identity holds for the generators so

ρ1
∼= ρ2 ⇔ ∃α ∈ GLn : α · (ρ1(y1), . . . , ρ1(yk)) = (ρ2(y1), . . . , ρ2(yk)).

We can conclude that the orbits of the GLn-action on RepnA ⊂ Matn×n(C)k are
in fact the isomorphism classes of representations.

Example 2.2. There are 3 isomorphism classes of 2-dimensional representations
of Z2: ρ

⊕2
1 , ρ⊕2

−1 and ρ1 ⊕ ρ−1. These three correspond to the three components
of Rep2C[Z2].

For finite groups the number of orbits in RepnC[G] exactly coincides with the
number of different irreducible components in RepnC[G]. One can prove this in
the following way: consider the function

ϕ : RepnC[G] → C|G| : ρ 7→ (χρ(g))g.

because the characters uniquely define the equivalence classes of representations,
this function maps every orbit to a different point in C|G|. As ϕ is a continuous
function (it is even polynomial) and Imϕ is a discrete set all the orbits must sit
in different connected components of RepnC[G]. For more general groups and
algebras this is not true. Let A = C[X] then Rep2A = Mat2×2(C) and consists of
only 1 connected component but there are infinitely many orbits (f.i. all scalar
matrices are different orbits).

For every orbit in RepnCG we can also calculate the dimension of the orbit:

Theorem 2.3. If S = S⊕e1
1 ⊕ · · · ⊕ S⊕ek

k then

dimOS = n2 − e21 − · · · − e2k.
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Proof. Define a map:
GLn → OS : g 7→ g · S.

This map is obviously surjective. The fiber of the point gS is the group

StabgS = {h ∈ GLn : hgS = gS} = {g−1hg ∈ GLn : hS = S}
= g−1(EndG(S) ∩ GLn)g = g−1(AutGS)g.

As x 7→ g−1xg is a bijection

dim StabgS = dimAutG(S) = dim EndG(S) = e21 + . . . e2k.

All fibers have the same dimension so

dimOS = dim GLn − dim fibers = n2 − (e21 + . . . e2k)

Instead of having a variety that classifies all n-dimensional representations, we
would like to have a variety that classifies all n-dimensional representations up to
isomorphism. By this we mean that in this new variety Q every orbit of RepnA
should correspond to one point and there exists a surjective morphism of varieties
RepnA→ Q that maps every point of RepnA to the point in Q to its orbit.

For finite groups we have indeed such a variety: take Q := Imϕ and as morphism
ϕ : RepnA→ Q. The variety Q consists of a finite number of points e so the ring
of polynomial functions over Q will be

C[Q] ∼= C⊕e.

Every polynomial function on Q will give us a polynomial function on Q if we
compose it with ϕ. Therefore we have an algebramorphism

ϕ∗ : C[Q] → C[RepnA] : f 7→ f ◦ ϕ.

This morphism is an injection because if f ◦ ϕ = 0, f must also be zero. This
means that we can see C[Q] as a subring of C[RepnA]. This subring consists of
the functions that are constant on the orbits.

Another way of putting this is the following. We can use the action of GLn on
RepnA to construct a new action on C[RepnA]:

GLn × C[RepnA] → C[RepnA] : (g, f) 7→ g · f : RepnA→ C : x 7→ f(g−1 · x).

Note that this action is linear: g · (λ1f1 + λ2f2) = λ1(g · f1) + λ2(g · f2) so in fact
C[RepnA] can be seen as an infinite dimensional representation of GLn.
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A function that is constant on the orbits remains invariant under this new action
and vice versa. So in fact C[Q] is the ring of functions that are invariant under
the GLn-action this ring is also denoted by C[RepnA]GLn . In short we have the
following diagram:

Geometry Algebra

RepnA

����

C[RepnA]

Q C[Q]
?�

OO

.

For finite group algebras everything works fine: Q is a variety, every point corre-
sponds uniquely to an orbit in RepnA. For more general algebras this will be no
longer the case, f.i. some points may correspond to more than one orbit. In the
next lessons we will investigate these problems.

2.3 Exercises

Give descriptions of the following representation varieties

1. Rep2Z3

2. Rep2Z4

3. Rep2S3

2.3.1 Right or Wrong

Are the following statements right or wrong, if right prove them, if wrong disprove
or find a counterexample.

1. Rep2CG of a finite abelian group algebra is a union of points and quadrics.

2. If RepnCG is connected then n = 1.

3. If RepnCG is connected then G is trivial.

4. RepnA⊕B = RepnA⊕ RepnB.

15
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5. dim RepnC[Z] = n2.

6. If A is a subalgebra of B then RepnB can be projected to RepnA.

7. Two simple representations ρ1, ρ2 : CG → Matn×n(C) sit in the same con-
nected component if and only if they have the same kernel.

8. dim RepnCG = n2 − 1 for a finite number of n.

9. The number of components of RepnCG increases with n.

10. The number of components of RepnCG increases with |G|.

11. If a component of RepnA is isomorphic to an affine space then A is a free
algebra.

12. If dim RepnCG > n2 − n for a given n ≥ 2 then G is not abelian.

13. If dim RepnCG > n2 − n for a given n ≥ 2 then G is not abelian.

14. If RepnCG is the same variety as RepnCH for any n then the finite groups
are isomorphic.

15. The dimension of the component of the regular representation is the same
as the dimension of Rep|G|CG.

16. The dimension of RepnS3 is 3
4
n2 if n is even.

17. If RepnCG has a unique component of maximal dimension then this com-
ponent corresponds to a simple representation.

18. If the orbit of V ∗ ⊗ V has dimension dimV 4 − 1 then V is trivial.

19. If for a given n > 1 all components in RepnCG have the same dimension
then G is trivial.

20. If RepnG is a finite set then n = 1.

16



Chapter 3

The ring of invariants

From the previous lesson we remember that GLn has an action on both RepnA
and its ring of functions C[RepnA]. In this chapter we will look at the ring of
invariant functions inside C[RepnA] and we will prove that this ring is allways
finitely generated. This means that C[RepnA]GLn can be seen as the ring of
functions over a variety: issnA. This variety will be called the algebraic quotient
of RepnA. It will be studied in the next chapter.

First of all we must look at the representations of GLn because, as we already
know, C[RepnA] is in fact an infinite dimensional representation of GLn.

3.1 GLn is a reductive group

We will prove that every finite dimensional representation of GLn is a direct sum
of simple representations.

First we will prove this for the group of unitary matrices Un := {A ∈ GLn|A†A =
1}. This is easier because Un is a compact group.

The proof is very similar to the proof for finite groups but as Un has an infinite
number of elements, we cannot calculate the sums of the form

1

|G|
∑
g∈G

f(g)

so instead of a sum we should use some kind of integral. This integral should
satisfy the following properties:

• it is normed:
∫

G
1dg = 1,

17



CHAPTER 3. THE RING OF INVARIANTS

• it is right and left invariant: ∀h ∈ G :
∫

G
f(gh)dg =

∫
G
f(hg)dg =

∫
G
f(g)dg.

Example 3.1. The group U1 can be seen as the complex numbers of the form
eiφ where φ ∈ [0, 2π[. A function over U1 is then a function over R with period
2π, so we can integrate it over the inverval [0, 2π[. To norm this we must divide
this integral by 2π so ∫

G

f(g)dg :=
1

2π

∫ 2π

0

f(eiφ)dφ

this integral is indeed left/right invariant because if h = eiθ∫
G

f(hg)dg =
1

2π

∫ 2π

0

f(eiφ+θ)dφ =
1

2π

∫ 2π+θ

θ

f(eiφ)dφ

=
1

2π

∫ 2π

0

f(eiφ)dφ =

∫
G

f(g)dg.

One can prove that for every compact topological group there exists indeed such
a unique integral and its corresponding measure is called the Haar Measure. The
prove of this statement is in general quite technical and therefore we will omit it.

Miniature 2: Alfred Haar
Alfred Haar was born on 11 Oct 1885 in Budapest, Hun-
gary. In 1904 Haar travelled to Germany to study at
Göttingen and there he studied under Hilbert’s supervision,
obtaining his doctorate in 1909 with a dissertation entitled
Zur Theorie der orthogonalen Funktionensysteme.
Haar is best remembered for his work on analysis on groups.
In 1932 he introduced a measure on groups, now called the
Haar measure, which allows an analogue of Lebesgue inte-
grals to be defined on locally compact topological groups.
It was used by von Neumann, by Pontryagin in 1934 and
Weil in 1940 to set up an abstract theory of commutative
harmonic analysis.

For Un we use the standard embedding in Matn×n(C). We can consider this last

space as R2n2
with the standard metric (in this way ‖A‖ =

√
TrAA†). This

allows us to integrate over subvarieties using the standard technique of multiple
integrals. This gives us an integral over Un: choose a parametrization g(σ1, . . . σp)
of Un where p is the dimension of Un and define∮

Un

f(g)dg :=

∫
. . .

∫
f(g(σ1, . . . , σp))J(g)dσ1 . . . dσp

where J(g) is the p-dimensional volume of the box made by the vectors dg
dσ1
, . . . , dg

dσp
.

Note that this definition is independent of the parametrization g.

18
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Multiplying the elements of Matn×n(C) on left/right with a unitary matrix X ∈
Un is in fact an orthogonal transformation because ‖AX‖ =

√
TrAX(AX)† =√

TrAXX†A† =
√

TrAA† = ‖A‖. As orthogonal transformations do not change
the metric J(g) = J(Xg) = J(gX), so dg = d(Xg) = d(gX) and∮

Un

f(Xg)dg =

∮
Un

f(Xg)dXg =

∮
Un

f(g)dg =

∮
Un

f(gX)dg.

The integral is left and right invariant. To make it normed we have to divide out
the p-volume of Un. ∫

Un

f(g)dg :=

∮
Un
f(g)dg∮

Un
1dg

.

This volume is finite because Un is compact.

Example 3.2. The set U2 is a 4-dimensional subset of R8. We can see this set as
the product of a 3-dimensional sphere and a circle: If A ∈ U2 then |A| ∈ U1 and
A/|A| ∈ SU2 = {A ∈ U2| detA = 1}. The last set is a threedimensional sphere
because it are the matrices of the form(

a+ bi c+ di
−c+ di a− bi

)
with a2 + b2 + c2 + d2 = 1

Now parametrize |A| as eiθ0 and A/|A| by a = cos θ1 cos θ2, b = cos θ1 sin θ2,
c = sin θ1 cos θ3, d = sin θ1 sin θ3 with θ0, θ2, θ3 ∈ [0, 2π[ and θ1 ∈ [0, π/2[.

If we calculate the derivatives of this parametrization we see that all ∂A
∂θi

are per-

pendicular and have lengths
√

2,
√

2,
√

2 cos θ1,
√

2 sin θ1 so J(A) =
√

2
4
sin θ1 cos θ1 =

2 sin 2θ1. The volume of U2 is then 4(2π)3

So ∫
U2

f(g)dg =
1

16π3

∫ π
2

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

f(A(~θ)) sin 2θ1dθ0 . . . dθ3.

Now using the Haar measure we can prove the reductivity of compact groups.

Theorem 3.3 (Reductivity of compact groups). Let G be a compact group
and V, ρV a representation of G. If W is a subrepresentation of V then there exist
another subrepresentation W⊥ such that V = W ⊕W⊥.

Proof. Let π : V → W a projection from V → W , and define

πG : V → W : x→
∫

G

gπ(g−1x)dg

19
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This map is again a projection onto W because if w ∈ W then g−1w ∈ W so
π(g−1w) = g−1w and

πG(w) =

∫
G

gπ(g−1w)dg =

∫
G

gg−1wdg = w

∫
G

1dg = w.

The kernel of this map is also a subrepresentation because if πG(x) = 0 then

πG(hx) =

∫
G

gπ(g−1hx)dg

= h

∫
G

(h−1g)π((g−1h)x)dg

= w

∫
G

gπ(g−1x)dg = hπG(x) = 0.

As V = KerπG ⊕ ImπG and ImπG = W we can choose W⊥ = KerπG.

We now have the reductivity of compact groups, but GLn is not compact. How-
ever GLn contains Un as a subgroup. This implies that if ρV : GLn → GL(V )
is a representation of GLn, ρV |Un is a representation of Un. If V has a GLn-
subrepresentation W , this subrepresentation is also a Un-subrepresentation so we
can find a Un-subrepresentation W⊥ such that V = W ⊕W⊥. We will prove that
W⊥ is also a GLn-subrepresentation.

To do this we need a small lemma:

Lemma 3.4. If φ : GLn → Cm : x 7→ (φ1, . . . , φm) is a complex polynomial map
such that φ|Un = 0 then φ = 0.

Proof. Let xij be the n2 standard coordinates for Matn×n(C). Then the functions
φi are rational function in the xij.

Suppose that A is an antihermitian matrix: A† = −A, then etA is a unitary
matrix because (etA)† = e(tA

†) = e−tA = (etA)−1. Therefore

∑
ij

Aij
∂

∂Xij

φ|1 = lim
ε→0

φ(eεA)− φ(1)

ε
= 0.

In the formula above the partial derivatives are complex but we can choose the
ε ∈ R.

Now we can choose a complex basis for Matn×n(C) that consist of antihermitian
matrices (Bij):
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• If i ≤ j then Bij is the matrix with i on the entries i, j and j, i, and zero
elsewhere.

• If i > j then Bij is the matrix with 1 on the place i, j, −1 on the entry j, i
and zero elsewhere.

This implies that
∂

∂Xij

φ|1 = 0.

Analoguously we can prove that also all higher order derivatives are zero, so
φ = 0.

Theorem 3.5 (Reductivity of GLn). Let ρV : GLn → GL(V ) be a rational
representation (this means that ρV is also a morphism of complex varieties). If
W is a subrepresentation of V then there exist another subrepresentation W⊥

such that V = W ⊕W⊥.

Proof. Let π be a projection of V onto W and define πUn as before. Denote the
kernel of πUn by W⊥. We will prove that W⊥ is a GLn-subrepresentation.

For a given x ∈ W⊥ we can construct the map

πx : GLn → W : g 7→ πUn(ρV (g)x).

This map is polynomial because both ρV (g) and πUn are. As πx|Un = 0 we know
from the lemma that πx = 0 so ∀g ∈ GLn : gx ∈ KerπUn = W⊥ and hence W⊥ is
a GLn-subrepresentation and V = W ⊕W⊥.

The extra condition that ρV is also a morphism of varieties is a natural condition
and it will hold in all cases we will consider.

We now have proved that every representation of GLn is a direct sum of simple
representations. We will not classify these simple representations because this
would lead us far away from the scope of the course notes: representations of
finitely generated algebras. This subject will be dealt with in the course Lie
theory.

3.2 The ring of invariants

Suppose now we have a reductive group G and let Ω be the set of its simple
representations up to isomorphism. Let V be a finite dimensional representation
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with dimension k. The ring of polynomial functions over V is R = C[V ] ∼=
C[X1, . . . , Xk] is a graded polynomial ring if we give the Xi degree 1.

On R we have an action of G:

G× C[V ] → C[V ] : (g, f) 7→ g · f := f ◦ ρV (g−1).

This action is linear and compatible with the algebra structure: g · f1f2 = (g ·
f1)(g · f2). As g · Xi :

∑
j ρV (g−1)ijXj is homogeneous of degree 1 the G-action

maps homogeneous elements of to homogeneous elements with the same degree.
This means that all homogeneous components Rκ are finite dimensional rational
representations of G.

We can decompose every Rκ as a direct sum of simple representations

Rκ =
⊕
ω∈Ω

W ω
κ with W ω

κ
∼= ω⊕eκω .

If we define then the isotopic components of R as Rω = ⊕κW
ω
κ . Now we can

regroup the terms in the direct sum of our ring to obtain

R ∼=
∞⊕

κ=0,ω∈Ω

W ω
κ =

⊕
ω∈Ω

Rω.

In words, the ring R is the direct sum of its isotopic components. Note also
that if α is a endomorphism of R as a G-representation then α will map isotopic
components inside themselves because of Schur’s lemma (try to prove this as an
exercise).

One isotopic component interests us specially: the isotopic component of the triv-
ial representation 1. This component consists of all functions that are invariant
under the G-action. It is not only a vector space but it is also a graded ring: the
ring of invariants S = RG = {f ∈ R|g · f = f} = ⊕κ∈NW

1
κ .

Consider a function f ∈ S. The map µf : R → R : x→ fx is an endomorphism
of R as a representation: µf (g · x) = f(g · x) = (g · f)(g · x) = g · fx = g · µfx.
So fRω ⊂ Rω for every ω. Put in another way we can say that all isotopic
components are S-modules.

We are now ready to prove the main theorem:

Theorem 3.6. If G is a reductive group and V a finite dimensional representation
then the ring of invariants C[V ]G is finitely generated.

Proof. To prove that S is finitely generated we first prove that this ring is noethe-
rian. Suppose that

a1 ⊂ a2 ⊂ a3 ⊂ · · ·
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is an ascending chain of ideals in S. Multiplying with R we obtain a chain of
ideals in R:

a1R ⊂ a2R ⊂ a3R ⊂ · · · .
This chain is stationary because R is a polynomial ring and hence noetherian.
Finally we show that aiR ∩ S = ai. Multiplication with ai maps the isotopic
components into themselves so

(aiR) ∩ S =

(
ai

⊕
ω∈Ω

Rω

)
∩ S =

(⊕
ω∈Ω

aiR
ω

)
∩ S = aiR

1 = aiS = ai.

Now let S+ = ⊕κ≥1W
1
κ denote the ideal of S generated by all homogeneous

elements of nonzero degree. Because S is noetherian, S+ is generated by a finite
number of homogeneous elements: S+ = f1S+ · · ·+frS. We will show that these
fi also generate S as a ring.

Now S = C + S+ so S+ = Cf1 + · · · + Cfr + S2
+, S2

+ =
∑

i,j Cfifj + S3
+ and by

induction
St

+ =
∑
i1...it

Cfi1 · · · fit + St+1
+ .

So C[f1, . . . , fr] is a graded subalgebra of S and S = C +S+ = C[f1, . . . , fr] +St
+

for every t. If we look at the degree d-part of this equation we see that

Sd = C[f1, . . . , fr]d + (St
+)d.

Because St
+ only contains elements of degree at least t, (St

+)d = 0 if t > d. As
the equation holds for every t we can conclude that

Sd = C[f1, . . . , fr]d and thus S = C[f1, . . . , fr]

We now return to the setting of representations of finitely generated algebras.
From the previous chapter we know that RepnA can be considered as a closed
subset of the vector space Matn×n(C)k. This space has a linear action of GLn

by simultaneous conjugation. By theorem ?? we know that the ring of invariant
functions C[Matn×n(C)k]GLn is finitely generated.

Now as the ring of polynomial function over RepnA is a quotient ring of C[Matn×n(C)k]:

C[RepnA] = C[Matn×n(C)k]/n with n = {f |f |RepnA = 0}.

Because RepnA is closed under the GLn-action, g · n = n, so the GLn-action is
compatible with the quotient:

g · (f + n) = g · f + n.
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This means that n is a subrepresentation of R = C[Matn×n(C)k] and we can
decompose n as a direct sum of isotopical components:

n =
⊕

ω

n ∩Rω =
⊕

ω

n
ω.

Taking the quotient we get

C[RepnA] = R/n =
⊕

ω

Rω/
⊕

ω

n
ω =

⊕
ω

Rω/nω.

This shows us that the invariants of C[RepnA] correspond to the summand R1/n1

and are the invariants of C[Matn×n(C)k] modulo n1:

C[RepnA]GLn =
C[Matn×n(C)k]GLn

n ∩ C[Matn×n(C)k]GLn
=

C[Matn×n(C)k]GLn + n

n
.

Thus the generators of C[Matn×n(C)k]GLn modulo n∩C[Matn×n(C)k]GLn are gen-
erators of C[RepnA]GLn . This allows us to conclude:

Theorem 3.7. For a finitely generated algebra A, C[RepnA]GLn is a finitely gen-
erated ring.

3.3 The generators of C[Matn×n(C)m]GLn

3.3.1 Polarization and restitution

The action of GLn on polynomial maps f ∈ C[Matn(C)m] is fully determined
by the action on the coordinate functions xk

ij. The action maps every xk
ij to a

linear combination of coordinate functions with the same k Hence, we can define
a gradation on C[Matn(C)m] by deg(xk

ij) = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at place
k) and decompose

C[Matn(C)m] =
⊕

(d1,...,dm)∈Nm

C[Matn(C)m](d1,...,dm)

where C[Matn(C)m](d1,...,dm) is the subspace of all multihomogeneous forms f in
the xk

ij of degree (d1, . . . , dm), that is, in each monomial term of f there are
exactly dk factors that are coordinate functions labeled by k, for all 1 ≤ k ≤ m.
The action of GLn stabilizes each of the subspaces C[Matn(C)m](d1,...,dm), that is,

if f ∈ C[Matn(C)m](d1,...,dm) then g.f ∈ C[Matn(C)m](d1,...,dm) for all g ∈ GLn.

In particular, if f determines a polynomial map on Matn(C)m which is constant
along orbits, that is, if f belongs to the ring of invariants C[Matn(C)m]GLn , then
each of its multihomogeneous components is also an invariant and therefore the
ring of invariants is generated by multihomogeneous invariants.
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Definition 3.8. If f ∈ C[Matn(C)m](1,...,1) we will call f multilinear. Equivalently
f is multilinear if for all i ∈ {1, . . . ,m}

f(A1, . . . , Ai + λB, . . . , Am) = f(A1, . . . , Ai, . . . , Am) + λf(A1, . . . , B, . . . , Am)

First, we will show that we can derive the multihomogeneous invariants from the
multilinear ones.

Let f ∈ C[Matn(C)m](d1,...,dm) and take for each 1 ≤ k ≤ m dk new variables
t1k, . . . , tdkk. Expand

f(t11A
(1)
1 + . . .+ td11A

(1)
d1
, . . . , t1mA

(m)
1 + . . .+ tdmmA

(m)
dm

)

as a polynomial in the variables tik, then we get an expression∑
ts11
11 . . . t

sd11

d11 . . . t
s1m
1m . . . t

sdmm

dmm .

f(s11,...,sd11,...,s1m,...,sdmm)(A
(1)
1 , . . . , A

(1)
d1
, . . . , A

(m)
1 , . . . , A

(m)
dm

)

such that for all 1 ≤ k ≤ m we have
∑dk

i=1 sik = dk. Moreover, each of the
f(s11,...,sd11,...,s1m,...,sdmm ) is a multi-homogeneous polynomial function on

Matn(C)⊕ . . .⊕Matn(C)︸ ︷︷ ︸
d1

⊕ . . .⊕Matn(C)⊕ . . .⊕Matn(C)︸ ︷︷ ︸
dm

of multi-degree (s11, . . . , sd11, . . . , s1m, . . . , sdmm). Observe that if f is an invariant
polynomial function on Matn(C)m, then each of these multihomogeneous func-
tions is an invariant polynomial function on Matn(C)⊕D where D = d1 + . . .+dm.

In particular, we consider the function

f1,...,1 : Matn(C)⊕D = Matn(C)⊕d1 ⊕ . . .⊕Matn(C)⊕dm → C

is multilinear and we will call it the polarization of the polynomial f and denote
it with Pol(f).

We can recover f back from its polarization. We claim to have the equality

Pol(f)(A1, . . . , A1︸ ︷︷ ︸
d1

, . . . , Am, . . . , Am︸ ︷︷ ︸
dm

) = d1! . . . dm!f(A1, . . . , Am)

and hence we recover f . This process is called restitution. The claim follows from
the observation that

f(t11A1 + . . .+ td11A1, . . . , t1mAm + . . .+ tdmmAm) =

f((t11 + . . .+ td11)A1, . . . , (t1m + . . .+ tdmmAm) =

(t11 + . . .+ td11)
d1 . . . (t1m + . . .+ tdmm)dmf(A1, . . . , Am)

and the definition of Pol(f). Hence we have proved
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Theorem 3.9. Any multi-homogeneous invariant polynomial function f on Matn(C)m

of multidegree (d1, . . . , dm) can be obtained by restitution of a multilinear invari-
ant function over Matn(C)d1+...+dm.

So it remains to determine the multilinear invariants of Matn(C)m. But in order
to do that we need something from the theory of finite groups.

3.3.2 Intermezzo: the double centralizer theorem

In this intermezzo we consider a finite group G and right CG-module V . Note
that a right module is also a representation of G by the action g · v = v · g−1 so
the whole theory of representations is also applicable to right modules.

So we know that this module can be seen as a direct sum of simple representations:

V ∼= S⊕e1
1 ⊕ · · · ⊕ S⊕ek

k

and we have that

EndCG(V ) ∼= Mate1×e1(C)⊕ · · · ⊕Matek×ek
(C).

From now on we will denote the image of CG under ρV by A and EndCG(V ) = B.
A and B are subalgebras from End(V ) and by definition B is the centralizer of
A:

B = {φ ∈ End(V )|∀x ∈ CG : ρV (x)φ = φρV (x)} = Z(A).

We will now prove also the opposite

Theorem 3.10. Under these identifications we have that

A = Z(B) = EndB(V ),

where we can see V as a B-representation by the standard injection B → End(V ).

Proof. From the first chapter we know that CG is a direct sum of matrix algebras
EndS for every simple representation S. Because the action is on the right every
S can be seen as the space of row vectors Cdim S where Matdim S×dim S(C) acts by
multiplication on the right. Each of these matrix algebras acts thus cannonically
on its own S and as the zero on the others. So

A = Matdim S1×dim S1(C)⊕ · · · ⊕Matdim Sk×dim Sk
(C),

26



CHAPTER 3. THE RING OF INVARIANTS

where the summation is over the simples that occur in V . Now let for every Si,
dj

i , 1 ≤ j ≤ dimSi denote the element in A that has a one on the jth diagonal
element of Matdim Si×dim Si

(C) and zero everywhere else. For a given simple S

Sdj
i =

{
0 if S 6∼= Si

C if S ∼= Si

So for the representation V we have that

V dj
i = (Sid

j
i )

ei = Cei

On this space the ith acts B = Mate1×e1(C)⊕· · ·⊕Matek×ek
(C) by multiplication

on the left, so V dj
i is a simple B-representation. Trivially one can see that

V dj
i
∼= V dl

k if and only if k = i, Let’s denote these simple representations by
Ti = V dj

i .

So as B-representation we can decompose V as

V = T dim S1
1 ⊕ · · · ⊕ T dim Sk

k .

This implies that by Schur’s lemma Z(B) := EndBV = MatdimS1×dimS1(C)⊕· · ·⊕
MatdimSk×dimSk

(C) is equal to A.

3.3.3 The multilinear invariants

Let V denote the standard n-dimensional complex vector space. This space has
a natural GLn(C)-action so we can consider V as a GLn-representation. With this
notation Matn(C)m is equal to the representation

(V ∗ ⊗ V )⊕m.

From linear algebra we know that the set of multilinear maps over a direct sum
of vector spaces V1 ⊕ · · · ⊕ Vk can be seen as the tensor product V ∗

1 ⊗ · · · ⊗ V ∗
k .

With this in mind we can identify the set of multilinear maps over Matn(C)m

with the representation

(V ∗ ⊗ V )∗⊗m ∼= (V ⊗ V ∗)⊗m ∼= (V ⊗m ⊗ V ⊗m∗) ∼= End(V ⊗m).

The GLn-invariant multilinear functions can then be seen as the GLn-linear endo-
morphisms of V ⊗m, so we have to determine EndGLn(V ⊗m).

On the other hand we have that V ⊗m has also the structure of a right Sm-module
by means of the action

(v1 ⊗ · · · ⊗ vm)σ = vσ1 ⊗ · · · ⊗ vσm
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This representation gives us a map

ρ : CSm → End(V ⊗m)

We will prove that the image of this map is exactly EndGLn(V ⊗m).

For this we will use the double centralizer theorem: from the fact that V ⊗m is a
GLn-representation we have a map from GLn to End(V ⊗m). The image of this map
is not an algebra but we can consider the smallest algebra that contains this image
and denote it by B. Of course we then have that EndGLn(V ⊗m) = EndB(V ⊗m).
If we can prove that B is equal to EndCSm

V ⊗m then we are done by the double
centralizer theorem.

Under the identification End(V ⊗m) = End(V )⊗m an element g ∈ GLn is mapped
to the symmetric tensor g ⊗ . . .⊗ g. So by definition B is the span of all tensors
g ⊗ . . .⊗ g, g ∈ GLn.

On the other hand, the image of EndSm
(V ⊗m) in End(V )⊗m is the subspace of all

symmetric tensors in End(V )⊗m. We can give a basis of this subspace as follows.

Let {e11, . . . , enn} be a basis of End(V ), then the vectors ei1j1 ⊗ . . .⊗ eimjm form a
basis of End(Vn)⊗m. The Sm-action permutes these basis elements and two basis
elements sit in the same orbit if they contain the eij with the same multiplicity.
So for every map

h : {e11, . . . , enn} → N with
∑
i,j

f(eij) = m

we have a basis element for EndSm
(V ⊗m)

eh =
1

m!

∑
σ∈Sm

(e11 ⊗ · · · ⊗ e11︸ ︷︷ ︸
f(e11)×

⊗ · · · ⊗ enn ⊗ · · · ⊗ enn︸ ︷︷ ︸
f(enn)×

)σ.

If B is not the whole space EndSm
(V ⊗m) there would be a nontrivial element

in the dual space EndSm
(V ⊗m)∗ that is zero on all elements of B. Denote this

element by

α :=
∑

h

αhe
∗
h.

Embedding End(V ) diagonally in End(V )⊗m we can construct a homogeneous
polynomial function on End(V ):

fα : End(V ) → C : v 7→
∑

h

αhe
∗
h(v ⊗ · · · ⊗ v).

If xij ∈ C[End(V )] is the coordinate function of End(V ) corresponding to the
basis element eij then

α :=
∑

h

αh

∏
i,j

x
h(eij)
ij .
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For every h the monomial
∏

i,j x
h(eij)
ij is different so α = 0 ⇔ fα = 0.

If α|B = 0 then we know that fα|GLn = 0 and as GLn is a dense subspace of End(V )
we can conclude that fα = 0. So α|B = 0 ⇔ α = 0 and hence B = EndSm

(V ⊗m).

By the double centralizer theorem we can now conclude that EndGLn(V ⊗m) is
spanned by elements of the form

fσ : V ⊗m → V ⊗m : (v1 ⊗ · · · ⊗ vm) 7→ (v1 ⊗ · · · ⊗ vm)σ, σ ∈ Sm

The only thing that we still have to do is to reinterpret these elements as multi-
linear functions over Matn×n(C)⊕m. Let w1, . . . , wn be the standaard basis for V
and let w∗1, . . . , w

∗
n be its dual basis with this notation we can write

fσ =
∑

i1,...im

(w∗i1 ⊗ · · · ⊗ w∗im)⊗ (wiσ1
⊗ · · · ⊗ wiσm

)

=
∑

i1,...im

(w∗i1 ⊗ wiσ1
)⊗ · · · ⊗ (w∗im ⊗ wiσm

)

The element w∗i ⊗wj ∈ Matn×n(C)∗ returns from a given matrix M the coefficient
Mij. So for a given m-tuple (M1, . . . ,Mm) we have that

fσ(M1, . . . ,Mm) =
∑

i1,...im

M1
i1iσ1

· · ·Mm
imiσm

.

we can now split up the permutation in cycles:

σ = (1σ(1)σ2(1) . . . ) . . . (kσ(k)σ2(k) . . . ) = (c11 . . . c
1
l ) . . . (c

k
1 . . . c

k
s).

Using these cycles we regroup the product and rename the indices such that the
sumations become matrix products

fσ(M1, . . . ,Mm) =
∑

j1,...jm

(M
c11
j1j2

· · ·M c1l
jlj1

) · · · (M ck
1

jm−s+1jm−k+2
· · ·M ck

s
jmjm−s+1

)

=
∑

j

(M c11 · · ·M c1l )jj × · · · ×
∑

j

(M ck
1 · · ·M ck

s )jj

= Tr(M c11 · · ·M c1l ) · · ·Tr(M ck
1 · · ·M ck

s )

So fσ is a product of traces of products of matrices in such a way that every
matrix M l occurs exactly once. These functions form a basis for the multilinear
invariants of Matn×n(C)⊕m. To obtain all invariants we simply have to apply
restitution. In this case this means that we allow some matrices to occur more
than once and some nowhere. Also because we are looking for generators and
not for a basis we can take as generators just the traces and not the products of
traces. We can conclude with
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Theorem 3.11 (First fundamental theorem of matrix invariants). The
ring C[Matn×n(C)m]GLn is generated by functions of the form TrM1 · · ·Mk where
k ∈ N and M1, . . . ,Mk are matrices out of the set {X1, . . . , Xm}, X l := (xl

ij)
which consists of the matrices of coordinate functions (i.e. the generic matrices).

Of course not all these generators are needed because there are an infinite number
of them and as we know C[Matn×n(C)m]GLn is finitely generated. One can prove
that one needs only the generators of degree at most 2n but we will omit this
proof.

3.4 Exercices

1. Determine all simple (polynomial) representations of GL1 = C∗, and more
general for the complex tori Ti = C∗ × · · · × C∗.

2. Show that C[Mat2×2(C)2]GL2 is generated by five invariants, and show that
there are no relations between them.

3. Show that C[Mat2×2(C)3]GL2 is generated by ten invariants.

3.4.1 Right or Wrong

Are the following statements right or wrong, if right prove them, if wrong disprove
or find a counterexample.

1. If dg is a Haar measure on G and dh on H then dgdh is a Haar measure on
G×H.

2. Let dg be a Haar measure on a compact Lie group G. If H is subgroup of
H then (

∫
H
dg) is zero or the inverse of a natural number.

3. Every topological group that has a Haar measure is compact.

4. Every compact subgroup of GLn is contained in Un.

5. A subgroup of a reductive group is also reductive.

6. The product of two reductive groups is reductive.

30



CHAPTER 3. THE RING OF INVARIANTS

7. If every non-trivial subgroup of G is reductive then G is finite.

8. HomGLn(V,W ) = HomUn(V,W ).

9. Let ρ : GLn → GL(V ) be a GLn-representation and let B be the smallest
subalgebra of End(V ) containing ρ(Un), then B also contains ρ(GLn).

10. If W is a GLn-subrepresentation of V then C[W ]GLn is a quotient ring of
C[V ]GLn .

11. If V is a GLn-representation and C[V ]GLn is finite dimensional then it is
isomorphic to C.

12. If V is a simple representation of a finite group G then C[V ]G = C.

13. If V,W are GLn-representations then C[V ⊕W ]GLn ∼= C[V ]GLn ⊕ C[W ]GLn .

14. If V is a representation of a finite group G then the number of generators
of C[V ]G is at least the dimension of V .

15. If G is a finite group and V is a representation then the dimension of the
space of invariants of degree k is k times the dimension of the linear invari-
ants.

16. If G is a finite group then C[RepnCG]GLn is generated by one generator.

17. If the polarization of f and the polarization of g are the same then f and
g are the same.

18. dim EndGL(V )(V
∗⊗k) = k!.

19. The number of generators of C[Matn×n(C)k]GLn is smaller than the dimen-
sion of EndGL(V )(V

∗⊗k) (with V = Cn).

20. The span of v1⊗v2−v2⊗v1 ∈ V ⊗V forms a simple GL(V )-representation.
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Chapter 4

The algebraic quotient

Because C[RepnA]GLn is finitely generated without nilpotent elements, it can be
seen as the ring of polynomial functions over a certain variety. We will call this
variety the algebraic quotient of RepnA and we will denote it by issnA.

issnA = {m C C[RepnA]GLn|m is a maximal ideal}

The injection C[issnA] = C[RepnA]GLn ↪→ C[RepnA] will give us a map

π : RepnA→ issnA : m 7→ m ∩ C[issnA].

Because all elements of C[issnA] are invariant under the GLn-action, points of
RepnA in the same orbit are mapped to the same point in issnA.

The reverse implication is however not true, points that are mapped to the same
point do not need to lie in the same orbit. Because π is a continuous map π−1(x)
must be a closed subset, so if there exists an orbit O that is not closed and
w = π(O) we know that π−1(w) must contain points outside O.

Example 4.1. Let A = C[X] then Rep2A = Mat2×2(C). The orbit of the zero
matrix consist of a single point but the orbit of ( 0 1

0 0 ) contains the zero matrix in
its closure because

( ε 0
0 1 ) ( 0 1

0 0 )
(

ε−1 0
0 1

)
= ( 0 ε

0 0 )

and we can chose ε as small as we like.

In this chapter we will describe the geometrical nature of the algebraic quotient:
what orbits are contained in π−1(x) and when are two orbits mapped to the same
point under π.

We will also investigate the connection between the geometrical picture and the
representation theory of the algebra.
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4.1 Jordan-Hölder and 1-parameter subgroups

Let A be a finite-dimensional algebra. A chain of representations is a sequence
of representations that are contained in each other:

C : V0 ⊂ V1 ⊂ · · · ⊂ Vn.

This chain is also called a filtration of Vn. The factors of a chain are the quotient
representations

Vi/Vi−1 := {x+ Vi−1|x ∈ Vi}.

To a chain one can associate the representation VC = ⊕iVi/Vi−1. Note that for a
semisimple representation VC ∼= V because for every subrepresentation W ⊂ V ,
W is also semisimple and V ∼= W ⊕V/W (prove this as an exercise). By repeated
application of this we get

V ∼= Vn/Vn−1 ⊕ Vn−1
∼= Vn/Vn−1 ⊕ Vn−1/Vn−2 ⊕ Vn−2

∼= · · · ∼= ⊕iVi/Vi−1 = VC.

If V0 = 0 and all factors are non-trivial simple representations the chain C is
called a composition series of Vn and the corresponding VC is called the semisim-
plification of V and is denoted by V ss.

Every finite-dimesional representation has a composition series: Let V be a rep-
resentation in RepnA, this representation is not neccesarily simple or semisimple
but it contains at least one simple subrepresentation V1. We can take the quo-
tient of V by this representation and we obtain a new representation of smaller
dimension. This representation contains again a simple representation S, define
now V2 = π−1(S) where π is the projection of V onto V/V1. The quotient V2/V1

is then isomorphic to S and hence simple. In a similar way we can proceed: find a
simple representation in V/V2 and construct V3. As the dimension of the Vi ⊂ V
increases we get for some n that Vn = V . The coresponding chain will then be a
decomposition chain.

A decomposition chain is however not unique: it is possible that V contains sev-
eral simple subrepresentations and each of them will give different decomposition
chains. However one can prove the following

Theorem 4.2 (Jordan-Hölder). The factors of a composition series of V are
unique up to permutation. In other words: the semisimplification of V

V ss :=
n⊕

i=1

Vi/Vi−1

doesn’t depend on the composition series (Vi)i≤n.
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Proof. Let (Vi)i≤n and (Wj)i≤m be two decomposition series of V . We proof this
by induction on n. If n = 1 then V is simple, so the only possible chain is 0 ⊂ V .

If n > 1, we consider the new chains

(Vi+1/V1)i≤n−1 and ((Wj + V1)/V1)j≤m

The first is a composition series of V/V1 because

Vi+1/V1

Vi/V1

∼=
Vi+1

Vi

is simple. Because V1 is simple it is either contained in Wj or V1 ∩Wj = 0, so
Wj + V1 is either Wj ⊕ V1 or Wj. If l is the first index such that Wl+1 contains
V1 then Wl+1/Wl ⊃ (Wl ⊕ V1)/Wl = V1. As Wl+1/Wl is simple is must be equal
to V1 and Wl+1

∼= Wl ⊕ V1.

This allows us to conclude that

(Wj+1 + V1)/V1

(Wj + V1)/V1

=


Wj+1/Wj V1 ⊂ Wj ⊂ Wj+1
(Wj+1⊕V1)/V1

(Wj⊕V1)/V1
= Wj+1/Wj V1 6⊂ Wj, V1 6⊂ Wj+1

Wj⊕V1/V1

(Wj⊕V1)/V1
= 0 V1 6⊂ Wj, V1 ⊂ Wj+1i.e. j = l

So the chain ((Wj + V1)/V1)j≤m,j 6=l is a composition for V/V1. By induction
the composition factors of ((Wj + V1)/V1)j≤m,j 6=l are a permutation of those of
(Vi+1/V1)i≤n−1. And hence the composition factors of (Vi)i≤n and (Wj)i≤m are
also equal up to a permutation.

Miniature 3: Otto Hölder (1859-1937)
Otto Hölder became a lecturer at Göttingen in 1884 and at
first he worked on the convergence of Fourier series. Shortly
after be began working at Göttingen he discovered the in-
equality now named after him. Hölder was offered a post
in Tbingen in 1889 but unfortunately he suffered a mental
collapse. After a year he made a steady recovery, giving
his inaugural lecture in 1890. He began to study the Galois
theory of equations and from there he was led to study com-
posotion series of groups. Hölder proved the uniqueness of
the factor groups in a composition series, the theorem now
called the Jordan-Hölder theorem.

Miniature 4: Camille Jordan (1838-1922)
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Jordan was a french mathematician who worked in a wide
variety of different areas essentially contributing to every
mathematical topic which was studied at that time. In
topology, Jordan is best remembered today among analysts
and topologists for his proof that a simply closed curve
divides a plane into exactly two regions, now called the
Jordan curve theorem. He also introduced the notion of
homotopy. In group theory he proved the Jordan-Hölder
theorem and a second major piece of work on finite groups
was the study of the general linear group over the field with
p elements, p prime.

Now let C : V0 ⊂ V1 ⊂ · · · ⊂ Vm be a chain with V0 = 0, Vm = V and dimV = n.
choose a basis in e1, . . . en ∈ V such that there exist numbers i1 < · · · < im and
e1 . . . eik is a basis for Vk. According to this basis the representation V has the
form

∀a ∈ A : ρV (a) =


ρV1/V0(a) ∗ . . . ∗

ρV2/V1(a) . . . ∗
. . . ∗

ρVm/Vm−1(a)


Now one can choose a one parameter subgroup of GLn (i.e. an n-dimensional
representation of C∗):

Λ(ε) =


ε11i1

ε21i2−i1

. . .

εm1im−im−1


The action of this one parameter subgroup is the following

Λ(ε) · ρV (a) =


ρV1/V0(a) ε∗ . . . εm−1∗

ρV2/V1(a) . . . εm−2∗
. . . ∗

ρVm/Vm−1(a)

 .
The limit for ε to 0 is the blockdiagonal matrix

lim
ε→0

Λ(ε) · ρV (a) =


ρV1/V0(a)

ρV2/V1(a)

. . .

ρVm/Vm−1(a)
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So limε→0 Λ(ε) · ρV (a) corresponds to the representation VC.

On the other hand let Λ : C∗ → GLn be a general one parameter subgroup then
we know that C∗ is a reductive group and the simple representations of C∗ are of
the form ε 7→ εz for z ∈ Z. We can use this to diagonalize λ:

Λ(ε) = g


εz11n1

εz21n2

. . .

εzk1nk

 g−1

with z1 < z2 < · · · ≤ zk. Now if the limit of limε Λ(ε) · ρV exists, the entries aij

of gρV g
−1 with n1 + · · · + ns < j ≤ n1 + · · · + ns+1 and i > n1 + · · · + ns+1 are

zero because they transform according with a negative exponent of ε. Otherwise
limε→0 ε

−kaij = ∞.

This means that there is a chain of submodules of g · V :

C : (Vi = g · Span(e1, . . . , en1+···+ni
)

where (ei) is the standardbasis of g · V .

Taking the limit to zero we see that also the entries aij with n1 + · · ·+ ns < j ≤
n1+· · ·+ns+1 and i < n1+· · ·+ns making the limit of gΛ(ε)g−1gρV g

−1 into a block
diagonal matrix. This implies that the representation limε→0 gΛ(ε)g−1 · gV =
g limε→0 Λ(ε)V is isomorphic to

V1/V0 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1.

Out all of this we can conclude

Theorem 4.3. A representation V has a filtration C with VC ∼= W if and only if
there is a one-parameter subgroup Λ : C∗ → GLn such that limε→0 Λ(ε)V ∼= W .

This implies that every point in the closure of OV that can be reached using a
one-parameter subgroup is of the from VC where C is a chain. However it might
be possible that there are other points in the closure that can not be reached
using this procedure.

4.2 Hilbert’s criterium

If we want to look at the closure of an orbit Ox we must take care of what closure
we mean, because we have two different topologies: the Zariski topology and the
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complex topology. As the Zariski topology has fewer open and closed sets, the
closure according the Zariski topology can be bigger than the one according to
the complex topology. We have already seen an example of this: the unitary
group is Zariski-dense in GLn but it is a complex-closed set so its complex closure
is Un itself.

However the above example was a bit tricky because Un has not the structure
of a complex variety. In this special case of complex varieties we can use a well
known fact in algebraic geometry (for the proof see [?])

Lemma 4.4. If X is a subvariety of Cn and X̄ is the Zariski closure of X then
X contains a subset Z that is open in X̄ such that Z̄ = X̄.

We know that Z is the intersection between an open subset U ⊂ Cn and a closed
subset X̄. The complex closure of Z is then equal to the complex closure of U
intersected with X̄. As ŪC is the whole Cn, we have that Z̄C = X̄ = Z̄. Because
Z ⊂ X, we also have that Z̄C ⊂ X̄C ⊂ X̄, so for subvarieties the complex and
the Zariski closure coincide: X̄C = X̄.

In the cases we are considering now this is the case: every orbit can be considered
as a complex subvariety of Cn, nl. the image of the map

φ : GLn → RepnA ⊂ Cmn2

: g 7→ g · x.

The complex closure of X in Y can be seen as all points in Y that can be reached
as the limit of a curve in X. This means that if y ∈ Ōx that there exists a smooth
function

γ : R → GLn s.t. lim
t→0

γ(t) · x = y.

However the limit of γ itself needs not to exist in GLn. This means that the
coefficients γij may be functions that have poles in 0. In general we can assume
that we can expand them to Laurent series (the proof of this is not completely
trivial but we omit it here, see also [?])

γij(t) = a−dt
−d + a−d+1t

−d+1 + · · · .

So we can conclude that there exists a matrix γ ∈ GLn(C((t))) such that the
coordinates of γ·x all sit in C[[t]] (because the limit t→ 0 exists). and γ·x|t=0 = y.

Lemma 4.5. Let γ be an n×n matrix with coefficients in C((t)) and det γ 6= 0.
Then there exist u1, u2 ∈ GLn(C[[t]]) such that

γ = u1.

t
r1 0

. . .

0 trn

 .u2

with ri ∈ Z and r1 ≤ r2 ≤ . . . ≤ rn.
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Proof. By multiplying γ with a suitable power of t we may assume that γ =
(γij(t))i,j ∈ Matn×n(C[[t]]). If f(t) =

∑∞
i=0 fit

i ∈ C[[t]] define v(f(t)) to be the
minimal i such that ai 6= 0. Let (i0, j0) be an entry where v(gij(t)) attains a
minimum, say r1. That is, for all (i, j) we have gij(t) = tr1trf(t) with r ≥ 0 and
f(t) an invertible element of C[[t]].

By suitable row and column interchanges we can take the entry (i0, j0) to the
(1, 1)-position. Then, multiplying with a unit we can replace it by tr1 and by
elementary row and column operations all the remaining entries in the first row
and column can be made zero. That is, we have invertible matrices a1, a2 ∈
GLn(C[[t]]) such that

γ = a1.

[
tr1 0τ

0 g1

]
.a2

Repeating the same idea on the submatrix g1 and continuing gives the result.

We can now state and prove the Hilbert criterium which allows us to study orbit-
closures by one parameter subgroups.

Theorem 4.6 (Hilbertcriterium). Let V be a GLn-representation and X ↪→ V
a closed GLn-stable subvariety. Let Ox = GLn.x be the orbit of a point x ∈ X.
Let Y ↪→ O(x) be a closed GLn-stable subset. Then, there exists a one-parameter
subgroup λ : C∗ → GLn such that

lim
t→0

λ(t).x ∈ Y

Proof. It suffices to prove the result for X = V . By lemma ?? there is an
invertible matrix γ ∈ Matn×n(C((t))) such that

(γ.x)t=0 = y ∈ Y

By lemma ?? we can find u1, u2 ∈ GLn(C[[t]]) such that

γ = u1.λ
′(t).u2 with λ′(t) =

t
r1 0

. . .

0 trn


a one-parameter subgroup. There exist xi ∈ V such that u2.x =

∑∞
i=0 zit

i in
particular u2(0).x = x0. But then,

(λ′(t).u2.x)t=0 =
∞∑
i=0

(λ′(t).xit
i)t=0

= (λ′(t).x0)t=0 + (λ′(t).x1t)t=0 + . . .
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For every i we have that the jth coordinate of (λ′(t).xit
i)t=0 is zero if rj +i > 0. So

if i > 0 only the coordinates corresponding with a negative power ri are nonzero.
this implies thatn

lim
s→0

λ
′−1(s).(λ′(t)xit

i)t=0 =

{
(λ′(t).x0)t=0 if i = 0,

0 if i 6= 0

We know that (λ′(t).u2.x)t=0 ∈ Y because Y is closed under the GLn-action,
moreover because Y is also a closed subset we have that

lim
s→0

λ
′−1(s).(λ′(t).u2.x)t=0 ∈ Y that is, (λ′(t).x0)t=0 ∈ Y

We have for the one-parameter subgroup λ(t) = u2(0)
−1.λ′(t).u2(0) that

lim
t→0

λ(t).x ∈ Y

finishing the proof.

Miniature 5: David Hilbert (1862-1943)
Hilbert was a german mathematician and he set forth
the first rigorous set of geometrical axioms in Founda-
tions of Geometry. He also proved his system to be self-
consistent. He invented a simple space-filling curve known
as the hilbert curve, and demonstrated the basis theorem
in invariant theory. At the Paris International Congress of
1900, Hilbert proposed 23 outstanding problems in math-
ematics to whose solutions he thought twentieth century
mathematicians should devote themselves. These problems
have come to be known as Hilbert’s problems, and a number
still remain unsolved today.

In the statement of theorem ?? it is important that Y is closed. In particular, it
does not follow that any orbit O(y) ↪→ O(x) can be reached via one-parameter
subgroups.

4.3 issnA

Now we will put the two previous paragraphs together to obtain an explicit
description of the quotient space.

First of all by the Jordan Holder theorem and the theory of one parameter sub-
groups we see that every representation V ∈ RepnA contains its semisimplification
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in the closure of its orbit. So if π is the projection of RepnA onto issnA we know
that every fiber π−1π(V ) contains at least one semisimple representation nl. V ss.

Secondly using Hilbert’s criterium we can prove

Theorem 4.7. An orbit OM is closed if and only if M is a semisimple represen-
tation

Proof. If OM is a closed orbit its semisimplification is contained in the orbit
because it is the limit of a one-parameter subgroup. I.e. M ∼= M ss.

To prove the converse we need some more steps

We first claim that every orbit OM = GLn ·M is Zariski open in its closure OM .
By lemma ?? we can take a subset U ⊂ O(M) that is Zariski open in OM and
consider the map φ : GLn → RepnA : g 7→ g ·M . But then,

OM = GLn.M = ∪g∈GLng.U

is also open in O(M).

Next, we claim that OM contains a closed orbit. Indeed, assume OM is not
closed, then the complement CM = O(M) − O(M) is a proper Zariski closed
subset whence dimCM < dimO(M). But, CM is the union of GLn-orbits OMi

with dimOMi
< dimOM . Either one of the OMi

is closed or we can split up CMi

in orbits. If the latter always holds, we can continue this way to come to the
point where dimCMi

= 0 and hence a point (because it is connected) which is
closed.

So ifM is semisimple, letOM ′ be the closed orbit in OM . By the Hilbert criterium
there is a one parameter subgroup λ such that limt→0 λ(t)M ⊂ OM ′ . But because
M is semisimple limt→0 λ(t)M ∼= M and hence OM = O′

M .

Finally we will prove that every fiber contains exactly one closed orbit. If O1 and
O2 are two closed GLn-orbits in Matn×n(C)m then the defining ideals

pi = {f ∈ C[Matn×n(C)m] : f |Oi
= 0}

are GLn-invariant: GLn · pi = pi.

If O1 and O2 are mapped to the same point then this means that their isotopical
components corresponding to the trivial GLn-representation are equal:

(p1)1 = p1 ∩ C[Matn×n(C)m]GLn = p2 ∩ C[Matn×n(C)m]GLn = (p2)1 = m,
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where m is the maximal ideal in C[Matn×n(C)m]GLn corresponding to that point.
As the orbits do not intersect we have that p1+p1 = C[Matn×n(C)m]. But looking
at the component at the isotopical components of this equation we see that

(p1)1 + (2)1 = (p1)1 = C[Matn×n(C)m]GLn

But this is impossible because then m = C[Matn×n(C)m]GLn .

we can conclude with the following theorem

Theorem 4.8. Let A be an affine C-algebra and M ∈ RepnA.

1. The orbit OM is closed in RepnA if and only if M is an n-dimensional
semisimple A-representation.

2. The orbitclosure OM contains exactly one closed orbit, corresponding to the
semisimplification of M .

3. The points of the quotient variety of RepnA under GLn parameterize the
isomorphism classes of n-dimensional semisimple A-representations. We
will denote the quotient variety by issnA.

4. The map π : RepnA → issnA is the best continuous approximation to the
orbit space. That is if φ : RepnA→ Y is a map of varieties that is constant
on the orbits, then there is a map φ′ : issnA→ Y such that φ = φ′ ◦ π

Proof. We will only prove (4), (1)− (3) follow easily from the previous theorems.
Let p ∈ issnA then π−1(p) containes a unique closed orbit O such that every orbit
in π−1(p) has O in its closure. Because φ is continuous φπ−1(p) is the same as
φ(O). So we can define φ′(p) = φ(O).
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Some examples

5.1 The polynomial algebra C[X ]

From chapter 2 we know that the representations of the polynomial algebra cor-
respond to conjugacy classes of matrices. In this section we look for a particularly
nice representative in a given conjugacy class. The answer to this problem is, of
course, given by the Jordan normal form of the matrix.

From the 3rd chapter we know that the ring of invariants C[Matn×n]GLn are gen-
erated by the functions Tj : A 7→ Tr(Aj).

We recall that the characteristic polynomial of A is defined to be the polynomial
of degree n in the variable t

χA(t) = det(t1n − A) ∈ C[t].

As C is algebraically closed, χA(t) decomposes as a product of linear terms

e∏
i=1

(t− λi)
di

where the {λ1, . . . , λe} are called the eigenvalues of the matrix A. Observe that
λi is an eigenvalue of A if and only if there is a non-zero eigenvector v ∈ Vn = Cn

with eigenvalue λi, that is, A.v = λiv. In particular, the rank ri of the matrix
Ai = λi1n − A satisfies n− di ≤ ri < n.

The coefficients of χA(t) =
∑
αkt

k (with αn = 1) are homoegeneous invariants
under the the GLn-action and hence can be written in function of of the Tj, j ≤ n
(because the degree of the coefficients is also not bigger than n).
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Because of the Cayley hamilton identity we know that A satisfies its own char-
acteristic polynomial so

∑
αkA

k = 0. This can be used to write all powers of A
higher then n − 1 as a linear combination of the Aj, j < n and coefficients that
are polynomial functions in the Tj, j ≤ n. Taking the trace we can rewrite the
Tj, j > n as polynomial functions of the Tj, j ≤ n. So the ring of invariants is
generated by the Tj, j ≤ n.

There are no relations between the Tj, j ≤ n. If there would be relations
dim issnC[X] would have dimension smaller than n. This would mean that the
map φ : issnC[X] → Cn ∼= {Xn + CXn−1 + · · · + C} mapping A to its char-
acteristic polynomial would not be surjective. This is not true: take any point
(a1, . . . , an) ∈ Cn and consider the matrix A ∈Mn

A =


0 an

−1 0 an−1

. . . . . .
...

−1 0 a2

−1 a1

 (5.1)

then we will show that π(A) = (a1, . . . , an), that is,

det(t1n − A) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)nan.

Indeed, developing the determinant of t1n − A along the first column we obtain

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−a
n

−a
n-1

−a
n-2

...
−a

2

t− a
1

1

−

t07162534

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−a
n

−a
n-1

−a
n-2

...
−a

2

t− a
1

t

107162534

Here, the second determinant is equal to (−1)n−1an and by induction on n the
first determinant is equal to t.(tn−1 − a1t

n−2 + . . . + (−1)n−1an−1), proving the
claim.

So we can conclude that

Theorem 5.1. The ring of invariants of the n × n-matrices under conjugation
is a polynomial ring in n variables (the Tj, j ≤ n. Therefore issnC[X] ∼= Cn.

Now we take a look at the orbits. The theorem of Jordan-Weierstrass gives us a
nice representant for every orbit
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Theorem 5.2 (Jordan-Weierstrass). Let A ∈ Matnn with characteristic poly-
nomial χA(t) =

∏e
i=1(t− λi)

di. Then, A determines unique partitions

pi = (ai1, ai2, . . . , aimi
) of di

associated to the eigenvalues λi of A such that A is conjugated to a unique (up
to permutation of the blocks) block-diagonal matrix

J(p1,...,pe) =


B1

B2

. . .

Bm


with m = m1 + . . . + me and exactly one block Bl of the form Jaij

(λi) for all
1 ≤ i ≤ e and 1 ≤ j ≤ mi where

Jaij
(λi) =


λi 1

λi
. . .
. . . 1

λi

 ∈Maij
(C)

The proof that we can bring A in such a form uses basic linear algebra an can be
found in most undergraduate books of linear algebra.

Let us prove uniqueness of the partitions pi of di corresponding to the eigenvalue
λi of A. Assume A is conjugated to another Jordan block matrix J(q1,...,qe), nec-
essarily with partitions qi = (bi1, . . . , bim′

i
) of di. To begin, observe that for a

Jordan block of size k we have that

rk Jk(0)l = k − l for all l ≤ k and if µ 6= 0 then rk Jk(µ)l = k

for all l. As J(p1,...,pe) is conjugated to J(q1,...,qe) we have for all λ ∈ C and all l

rk (λ1n − J(p1,...,pe))
l = rk (λ1n − J(q1,...,qe))

l

Now, take λ = λi then only the Jordan blocks with eigenvalue λi are important
in the calculation and one obtains for the ranks

n−
l∑

h=1

#{j | aij ≥ h} respectively n−
l∑

h=1

#{j | bij ≥ h}.
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Now, for any partition p = (c1, . . . , cu) and any natural number h we see that the
number z = #{j | cj ≥ h}

c1

c2

cz

cz+1

cu
h

is the number of blocks in the h-th row of the dual partition p∗ which is defined
to be the partition obtained by interchanging rows and columns in the Young
diagram of p. Therefore, the above rank equality implies that p∗i = q∗i and hence
that pi = qi. As we can repeat this argument for the other eigenvalues we have the
required uniqueness. Hence, the Jordan normal form shows that the classification
of GLn-orbits in Mn consists of two parts : a discrete part choosing

• a partition p = (d1, d2, . . . , de) of n, and for each di,

• a partition pi = (ai1, ai2, . . . , aimi
) of di,

determining the sizes of the Jordan blocks and a continuous part choosing

• an e-tuple of distinct complex numbers (λ1, λ2, . . . , λe).

fixing the eigenvalues. Moreover, this e-tuple (λ1, . . . , λe) is determined only up
to permutations of the subgroup of all permutations π in the symmetric group
Se such that pi = pπ(i) for all 1 ≤ i ≤ e.

Example 5.3. Orbits in Rep2C[X].

A 2× 2 matrix A can be conjugated to an upper triangular matrix with diagonal
entries the eigenvalues λ1, λ2 of A.

The matrix A has two equal eigenvalues if and only if the discriminant of the
characteristic polynomial is zero, that is when 2Tr(A2) = Tr(A)2. This condition
determines a closed curve C in C2 where

C = {(x, y) ∈ C2 | x2 − 2y = 0}.
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C

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe
the fibers of the surjective map π : RepnC[X] → issnC[X] = C2.

If p = (x, y) ∈ C2 − C, then π−1(p) consists of precisely one orbit (which is then
necessarily closed in M2) namely that of the diagonal matrix[

λ1 0
0 λ2

]
where λ1,2 =

x±
√

2y − x2

2

If p = (x, y) ∈ C then π−1(p) consists of two orbits,

Oλ 1
0 λ

 and Oλ 0
0 λ


where λ = 1

2
x. We have seen that the second orbit lies in the closure of the first.

Observe that the second orbit reduces to one point in M2 and hence is closed.
Hence, also π−1(p) contains a unique closed orbit.

To describe the fibers of π as closed subsets of M2 it is convenient to write any
matrix A as a linear combination

A = u(A)

[
1
2

0
0 1

2

]
+ v(A)

[
1
2

0
0 −1

2

]
+ w(A)

[
0 1
0 0

]
+ z(A)

[
0 0
1 0

]
.

Expressed in the coordinate functions u, v, w and z the fibers π−1(p) of a point
p = (x, y) ∈ C2 are the common zeroes of{

u = x

v2 + 4wz = 2y − x2

The first equation determines a three dimensional affine subspace of M2 in which
the second equation determines a quadric. If p /∈ C this quadric is non-degenerate
and thus π−1(p) is a smooth 2-dimensional submanifold of M2. If p ∈ C, the
quadric is a cone with top lying in the point x

2
12. Under the GL2-action, the

unique singular point of the cone must be clearly fixed giving us the closed orbit
of dimension 0 corresponding to the diagonal matrix. The other orbit is the com-
plement of the top and hence is a smooth 2-dimensional (non-closed) submanifold
of M2. The graphs in figure ?? represent the orbit-closures and the dimensions
of the orbits.
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•

•2

0

Figure 5.1: Orbit closures of 2× 2 matrices

Example 5.4. Orbits in M3.

We will describe the fibers of the surjective map Mπ
3 C3. If a 3 × 3 matrix has

multiple eigenvalues then the discriminant d = (λ1 − λ2)
2(λ2 − λ3)

2(λ3 − λ1)
2 is

zero. Clearly, d is a symmetric polynomial and hence can be expressed in terms
of T1, T2 and T3. More precisely,

d =
4

3
T 3

1 T3 −
3

2
T 4

1 T2 +
1

6
T 6

1 −
1

2
T 3

2 +
7

2
T12T 2

2 + 3T 2
3 − 6T1T2T3

The set of points in C3 where d vanishes is a surface S with singularities. These
singularities are the common zeroes of the ∂d

∂σi
for 1 ≤ i ≤ 3. One computes that

these singularities form a twisted cubic curve C in C3, that is,

C = {(3c, 3c2, 3c3) | c ∈ C}.

The description of the fibers π−1(p) for p = (x, y, z) ∈ C3 is as follows. When
p /∈ S, then π−1(p) consists of a unique orbit (which is therefore closed in M3),
the conjugacy class of a matrix with paired distinct eigenvalues. If p ∈ S − C,
then π−1(p) consists of the orbits of

A1 =

λ 1 0
0 λ 0
0 0 µ

 and A2 =

λ 0 0
0 λ 0
0 0 µ


Finally, if p ∈ C, then the matrices in the fiber π−1(p) have a single eigenvalue
λ = 1

3
x and the fiber consists of the orbits of the matrices

B1 =

λ 1 0
0 λ 1
0 0 λ

 B2 =

λ 1 0
0 λ 0
0 0 λ

 B3 =

λ 0 0
0 λ 0
0 0 λ


We observe that the strata with distinct fiber behavior (that is, C3 − S, S − C
and C) are all submanifolds of C3, see figure ??.

The dimension of an orbit O(A) in Mn is computed as follows. Let CA be the
subspace of all matrices in Mn commuting with A. Then, the stabilizer subgroup
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of A is a dense open subset of CA whence the dimension of O(A) is equal to
n2 − dim CA.

Performing these calculations for the matrices given above, we obtain the follow-
ing graphs representing orbit-closures and the dimensions of orbits

C3 − S

•6

•

•

•6

4

0

OB1

OB2

OB3

•

•6

4

OA1

OA2

S − C C

5.2 C〈X, Y 〉 and C[X, Y ]

In this section we will study the 2-dimensional representations of C〈X, Y 〉 and
C[X, Y ].

First we look at the invariants. For (A,B) ∈ M2
2 = M2 ⊕M2 we will show that

the polynomial functions Tr(A),Tr(A2), Tr(B),Tr(B2) and Tr(AB) generate all
invariants.

First of all because of the Cayley-Hamilton identity the we can rewrite A2 in
function of A, TrA and TrA2. The same holds for B2 and (AB)2. Using the
Cayley-Hamilton identity for (A+B)2 we can rewrite BA in function of AB, A,
B and the 5 invariants:

(A+B)2 = (A+B)Tr(A+B)− 1

2
((Tr(A+B))2 − Tr(A+B)2)

A2 + AB +BA+B2 = ATrA+BTrB + ATrB +BTrA− 1

2
TrA2 + TrB2 + 2TrATrB − TrA2 − TrB2 − 2TrAB

AB +BA = ATrB +BTrA− TrATrB + TrAB

This implies that we can rewrite every trace of every product of A′s and B′s in
terms of the 5 basic invariants. Remark that we can interchange TrA2, TrB2 for
detA and detB as generators because we can express those traces in terms of
the determinants and vice versa.

Here, we will show that the map M2
2 = M2 ⊕Mπ

2 C5 defined by

(A,B) 7→ (Tr(A), det(A),Tr(B), det(B),Tr(AB))
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is surjective.

For every (x1, . . . , x5) ∈ C5 we will construct a couple of 2×2 matrices (A,B) (or
rather its orbit) such that π(A,B) = (x1, . . . , x5). Consider the open set where
x2

1 6= 4x2. We have seen that this property characterizes those A ∈ M2 such
that A has distinct eigenvalues and hence diagonalizable. Hence, we can take a
representative of the orbit (A,B) to be a couple

(

[
λ 0
0 µ

]
,

[
c1 c2
c3 c4

]
)

with λ 6= µ. We need a solution to the set of equations
x3 = c1 + c4

x4 = c1c4 − c2c3

x5 = λc1 + µc4

Because λ 6= µ the first and last equation uniquely determine c1, c4 and substi-
tution in the second gives us c2c3. Analogously, points of C5 lying in the open
set x2

3 6= x4 lie in the image of π. Finally, for a point in the complement of these
open sets, that is when x2

1 = x2 and x2
3 = 4x4 we can consider a couple (A,B)

(

[
λ 1
0 λ

]
,

[
µ 0
c µ

]
)

where λ = 1
2
x1 and µ = 1

2
x3. Observe that the remaining equation x5 = tr(AB) =

2λµ+ c has a solution in c.

Now, we will describe the fibers of π. Assume (A,B) is such that A and B have
a common eigenvector v. Simultaneous conjugation with a g ∈ GLn expressing
a basechange from the standard basis to {v, w} for some w shows that the orbit
(A,B) contains a couple of upper-triangular matrices. We want to describe the
image of these matrices under π. Take an upper triangular representative in
(A,B)

(

[
a1 a2

0 a3

]
,

[
b1 b2
0 b3

]
).

with π-image (x1, . . . , x5). The coordinates x1, x2 determine the eigenvalues a1, a3

of A only as an unordered set (similarly, x3, x4 only determine the set of eigen-
values {b1, b3} of B). Hence, tr(AB) is one of the following two expressions

a1b1 + a3b3 or a1b3 + a3b1

and therefore satisfies the equation

(tr(AB)− a1b1 − a3b3)(tr(AB)− a1b3 − a3b1) = 0.
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Recall that x1 = a1 + a3, x2 = a1a3, x3 = b1 + b3, x4 = b1b3 and x5 = tr(AB) we
can express this equation as

x2
5 − x1x3x5 + x2

1x4 + x2
3x2 − 4x2x4 = 0.

This determines an hypersurface HC5. If we view the left-hand side as a poly-
nomial f in the coordinate functions of C5 we see that H is a four dimensional
subset of C5 with singularities the common zeroes of the partial derivatives

∂f

∂xi

for 1 ≤ i ≤ 5

These singularities for the 2-dimensional submanifold S of points of the form
(2a, a2, 2b, b2, 2ab). We now claim that the smooth submanifolds C5 −H, H − S
and S of C5 describe the different types of fiber behavior. In chapter 6 we will
see that the subsets of points with different fiber behavior (actually, of different
representation type) are manifolds for m-tuples of n× n matrices.

If p /∈ H we claim that π−1(p) is a unique orbit, which is therefore closed in M2
2 .

Let (A,B) ∈ π−1 and assume first that x2
1 6= 4x2 then there is a representative in

(A,B) of the form

(

[
λ 0
0 µ

]
,

[
c1 c2
c3 c4

]
)

with λ 6= µ. Moreover, c2c3 6= 0 (for otherwise A and B would have a common
eigenvector whence p ∈ H) hence we may assume that c2 = 1 (eventually after
simultaneous conjugation with a suitable diagonal matrix diag(t, t−1)). The value
of λ, µ is determined by x1, x2. Moreover, c1, c3, c4 are also completely determined
by the system of equations 

x3 = c1 + c4

x4 = c1c4 − c3

x5 = λc1 + µc4

and hence the point p = (x1, . . . , x5) completely determines the orbit (A,B).
Remains to consider the case when x2

1 = 4x2 (that is, when A has a single
eigenvalue). Consider the couple (uA+ vB,B) for u, v ∈ C∗. To begin, uA+ vB
and B do not have a common eigenvalue. Moreover, p = π(A,B) determines
π(uA+ vB,B) as

tr(uA+ vB) = utr(A) + vtr(B)

det(uA+ vB) = u2det(A) + v2det(B) + uv(tr(A)tr(B)− tr(AB))

tr((uA+ vB)B) = utr(AB) + v(tr(B)2 − 2det(B))

Assume that for all u, v ∈ C∗ we have the equality tr(uA+vB)2 = 4det(uA+vB)
then comparing coefficients of this equation expressed as a polynomial in u and
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v we obtain the conditions x2
1 = 4x2, x

2
3 = 4x4 and 2x5 = x1x3 whence p ∈ SH,

a contradiction. So, fix u, v such that uA + vB has distinct eigenvalues. By the
above argument (uA+ vB,B) is the unique orbit lying over π(uA+ vB,B), but
then (A,B) must be the unique orbit lying over p.

Let p ∈ H − S and (A,B) ∈ π−1(p), then A and B are simultaneous upper
triangularizable, with eigenvalues a1, a2 respectively b1, b2. Either a1 6= a2 or
b1 6= b2 for otherwise p ∈ S. Assume a1 6= a2, then there is a representative in
the orbit (A,B) of the form

(

[
ai 0
0 aj

]
,

[
bk b
0 bl

]
)

for {i, j} = {1, 2} = {k, l}. If b 6= 0 we can conjugate with a suitable diagonal
matrix to get b = 1 hence we get at most 9 possible orbits. Checking all pos-
sibilities we see that only three of them are distinct, those corresponding to the
couples

(

[
a1 0
0 a2

]
,

[
b1 1
0 b2

]
) (

[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
) (

[
a2 0
0 a1

]
,

[
b1 1
0 b2

]
)

Clearly, the first and last orbit have the middle one lying in its closure. Observe
that the case assuming that b1 6= b2 is handled similarly. Hence, if p ∈ H−S then
π−1(p) consists of three orbits, two of dimension three whose closures intersect in
a (closed) orbit of dimension two.

Finally, consider the case when p ∈ S and (A,B) ∈ π−1(p). Then, both A and B
have a single eigenvalue and the orbit (A,B) has a representative of the form

(

[
a x
0 a

]
,

[
b y
0 b

]
)

for certain x, y ∈ C. If either x or y are non-zero, then the subgroup of GL2

fixing this matrix consists of the matrices of the form

Stab

[
c 1
0 c

]
= {
[
u v
0 u

]
| u ∈ C∗, v ∈ C}

but these matrices also fix the second component. Therefore, if either x or y is
nonzero, the orbit is fully determined by [x : y] ∈ P1. That is, for p ∈ S, the
fiber π−1(p) consists of an infinite family of orbits of dimension 2 parameterized
by the points of the projective line P1 together with the orbit of

(

[
a 0
0 a

]
,

[
b 0
0 b

]
)
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which consists of one point (hence is closed in M2
2 ) and lies in the closure of each

of the 2-dimensional orbits.

Concluding, we see that each fiber π−1(p) contains a unique closed orbit (that of
minimal dimension). The orbitclosure and dimension diagrams have the following
shapes

C5 −H

•3 //////////

����������•

• •3 3

2

H − S

•

• •77777777777

�����������0

2 2
P1

S
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