
Chapter 1

Preliminaries

1 Sets

Sets are the building blocks of modern mathematics. Almost all mathemat-
ical objects can be described in terms of sets and relations between them.
In this section we will introduce the basic concepts from set theory.

(1.1) Naively speaking a set is just an unordered collection of objects. We can
describe a set by putting its objects between braces. E.g. the set of all vowels
is

V := {a, e, i, o, u}.

A set is an unordered collection, so we can also write

V := {e, u, a, i, o}.

An object can occur only once in a set so {a, a} is the same as {a}. A set can
also contain an infinite number of objects. An example of this is the set of
natural numbers

N := {0, 1, 2, 3, 4, 5, . . . }.

(1.2) To express that a certain object is in a given set or not we can use the
mathematical symbols ∈ and 6∈

a ∈ V but b 6∈ V

We say that a is an element of V .
Two sets are the same if they contain the same elements:

V = W ⇐⇒ ∀x : (x ∈ V ⇐⇒ x ∈W )
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(1.3) Another way of describing a set is by putting between braces the
defining property of its elements

V := {x|x is a vowel} and N := {x|x is a natural number}

However defining a set in this way can be tricky: sometimes you end up
defining something that cannot be a set. An example of this is the collection
of all sets that do not contain themselves. If this collection were a set we
run into problems: does this set contain itself or not? To exclude these
contradictory sets one needs to work out an axiomatic theory for sets. This
was done by Zermelo and Fraenckel and standard set theory is still refered
to ZermeloFraenkel set theory with the axiom of choice.

(1.4) A special set is the empty set. It contains no objects and it is denoted
by {} or ∅. By the previous definition of equality of sets, it is easy to see
that there is just one unique empty set.
A set B is called a subset of A if all elements in B are also in A:

B ⊂ A ⇐⇒ ∀x ∈ B : x ∈ A.

The empty set is a subset of all sets including itself. In general a set with n
elements has 2n subsets. F.i. the subsets of {1, 2} are

∅, {1}, {2}, {1, 2}

The set containing all the subsets of a given set A is called the power set of
A

P(A) := {x|x ⊂ A}

So
P({1, 2}) = {∅, {1}, {2}, {1, 2}}

(1.5) Given two sets A and B one can define the union A∪B as the set that
contains elements of A and B.

A ∪B = {x|x ∈ A or x ∈ B}

The intersection A ∩B is the set of elements that are both in A and B

A ∩B = {x|x ∈ A and x ∈ B}

Two sets are called disjoint if there intersection is the empty set.
The difference A \B is the set of elements that are in A but not in B

A \B = {x|x ∈ A and x 6∈ B}



2 Relations 3

(1.6) Aside.
The power of the concept of a set is that a set can be an element of another
set. F.i. the set

{{}, {{}}}

is a set with two elements: the empty set and the set that contains the emp-
tyset. In principle one could build the whole of mathematics starting from
the empty set and constructing new sets like the one above. An example of
this are the natural numbers: one defines

0 : = ∅
1 : = {0} = {∅}
2 : = {0, 1} = {∅, {∅}}

...
N + 1 : = N ∪ {N}.

In this way the set N contains exactly N elements. Following this frame-
work we get that

N := {∅, {∅}, {∅, {∅}}, . . . }

More elaborate constructions allow us to construct from this the set of in-
tegers Z, the set of rational numbers Q, the set of real numbers R and the
set of complex numbers C, but we will not pursue this direction. We can
consider these sets as subsets of each other in the following way:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

2 Relations

(1.7) A couple is an ordered pair of two objects (those objects can be the
same). We denote the couple consisting of two objects a and b by (a, b). By
definition (a, b) 6= (b, a). In a similar way we can define triples, quadruples
etc.
The Cartesian product of two sets A and B is the set consisting of all couples
with the first element in A and the second element in B.

A×B := {(a, b)|a ∈ A, b ∈ B}

E.g.

{0, 1} × {2, 3, 4} = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)} but
{2, 3, 4} × {0, 1} = {(2, 0), (3, 0), (4, 0), (2, 1), (3, 1), (4, 1)}

The cartesian product of a set with n elements with a set with m elements
has nm elements and therefore we speak of a product.



4 Preliminaries

(1.8) A relation ./ between two sets A and B is a subset of their cartesian
product: ./ ⊂ A×B. We call A the source and B the target of R.
Given a relation ./we write a./b if (a, b) ∈ ./ and a 6 ./b if not. The domain of
./ is the subset of the source containing all elements that occur in a couple
of R. The image is the subset of the target containing all elements that occur
in a couple of ./.

Dom ./ := {a ∈ A|∃x ∈ B : a./x} and Im ./ := {b ∈ B|∃x ∈ A : x./b}

In general relations become only interesting if they satisfy some extra prop-
erties. In the next subsections we will have a look at some special types of
relations.

2.1 Maps

(1.9) A relation f ⊂ A × B is called a map if for every element a in the
source there is a unique b in the target such that afb:

∀a ∈ A : ∃!b ∈ B : afb.

In that case we denote this unique b by f(a). The map itself is sometimes
represented by f : A→ B : a 7−→ f(a).

(1.10) A map is called

• surjective if every b in the target is in the image of f .

∀b ∈ B : ∃a ∈ A : b = f(a)

The map
π : Z→ N : a 7−→ |a|

is an example of a surjective map.

• injective if different elements inA are mapped to different elements in
B

∀x, y ∈ A : x 6= y =⇒ f(x) 6= f(y)

The map
ι : Z→ Z : a 7−→ 2a

is an example of an injective map.

• bijective if it is injective and surjective.

∀b ∈ B : ∃!a ∈ A : b = f(a)

A bijective map from a set to itself is called a permutation.
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The map

β : Z→ N : a 7−→

{
2a a ≥ 0
−1− 2a a < 0

is an example of a bijective map.

(1.11) Two maps f : A→ B and g : B → C can be composed to obtain a new
map

g ◦ f : A→ C : a 7−→ g(f(a)).

For any set A we can define the identity map as

IA : A→ A : a 7−→ a

These maps have the special property that for any other map f : A → B
we get

IB ◦ f = f = f ◦ IA

(1.12) For any relation R we can define the inverse relation R−1 as the rela-
tion that switches the role of source and target:

R−1 = {(b, a)|(a, b) ∈ R} ⊂ B ×A.

(1.13) Lemma.
The inverse of a map is again a map if and only if the map is bijective.

Proof. the inverse of a map f is also a map if for every element b in the target
there is a unique element in the source such that b = f(a). This implies that
f is both injective and surjective.

(1.14) Aside. The axiom of choice
Apart from the obvious axioms for set theory, the standard theory includes
an axiom that is a little bit controversial: the axiom of choice. This axiom
states that for any set S the elements of which are all nonempty sets, there
exists a map

f : S →
⋃
X∈S

X

such that f(X) ∈ X . Such a map is called a choice function, because it
allows you to choose one element from each X . The axiom used to be con-
troversial in the beginning of the 20th century because it merely states the
existence of such a function, but it does not indicate how one can construct
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such a function. For finite sets one can prove the axiom from the other
axioms of set theory but for infinite sets this is generally not possible.
Nowadays the axiom of choice is accepted by most mathematicians, be-
cause it is needed in many important results in mathematics. In linear al-
gebra it is needed to prove the existence of a bases for all vector spaces.

2.2 Operations and groups

(1.15) An operation on a set A is a map

♦ : A×A→ A.

For an operator we write a♦b for the image of (a, b) under ♦.
Operations become more interesting if they have special properties:

A Associativity:

∀a, b, c ∈ A : a♦(b♦c) = (a♦b)♦c

This property enables us to leave the brackets out and write a♦b♦c
without confusion.

N The existence of an neutral element:

∃e ∈ A : ∀a ∈ A : a♦e = e♦a = a

I The existence of inverses:

∀a ∈ A : ∃inv(a) ∈ A : a♦inv(a) = inv(a)♦a = e

C Commutativity:
∀a, b ∈ A : a♦b = b♦a

(1.16) A set A equipped with an operation ♦ that satisfies the first three
properties (A,N,I) is called a group. If it satisfies also the commutativity, we
call the group commutative or abelian.
Groups occur a lot in mathematics. The standard example is the addition
for integers

+ : Z× Z→ Z : (a, b) 7−→ a+ b

with as neutral element 0 and as inverse inv(a) = −a. It is clear that this
group is commutative.
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(1.17) Example.
Another basic example is the group of permutations on a set

Perm(A) := {φ : A→ A|φ is a permutation}

equipped with the composition as operation:

◦ : Perm(A)× Perm(A)→ Perm(A) : (φ, ψ)→ φ ◦ ψ

In general when A has more than two elements, this group is not commu-
tative.

(1.18) Aside.
Many groups occur as groups of permutations with special properties.

• The group of isometries of the Euclidean plane E is the set of permu-
tations that preserve the distance between points.

Isom(E) := {φ ∈ Perm(E)|∀x, y ∈ E : d(φ(x), φ(y)) = d(x, y)}

• The group of translations of the Euclidean plane E is the set of isome-
tries that map line to parallel lines and fix either no or all points.

Trans(E) := {φ ∈ Isom(E)|∀x, y ∈ E : φ(x)φ(y)//xy&φ(x) = x =⇒ φ(y) = y}

2.3 Equivalence relations

Now we take a look at relations with the same source and target.

(1.19) A relation R ⊂ A×A is called

R reflexive if
∀a ∈ A : aRa.

S symmetric if R = R−1 or

∀a, b ∈ A : aRb ⇐⇒ bRa.

T transitive if
∀a, b, c ∈ A : aRb&bRc =⇒ aRc

If a relation ' satisfies these three properties then we will call it an equiva-
lence relation.
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(1.20) Equivalence relations are very important tools in mathematics. Many
objects in mathematics are not exactly the same but very alike. The stan-
dard way to expres this, is by introducing an equivalence relation. The
three main properties of an equivalence relation formalize this alikeness:
an object is alike itself (reflexivity), if A is like B then by is like A (symme-
try) and if A is like B and B is like C then A is like C (transitivity).

(1.21) For any element a ∈ A we can define the subset consisting of all
elements equivalent to a:

[[a]] := {b|b ' a}.

This set is called the equivalence class of a.
We can also construct the set of all equivalence classes in A

A/ ':= {[[a]]|a ∈ A}

This set is called the quotient set. There is also a natural quotient map

π : A→ A/ ': a 7−→ [[a]]

This is clearly a surjective map.

(1.22) A partition of a set A is a set B ⊂ P(A) such that ∀U, V ∈ B : U 6=
V ⇐⇒ U ∩ V = ∅ and ∪x∈B . In words, it’s a set of disjoint nonempty
subsets of A such that their union is A. It is clear from its construction that
for any equivalence relation ' the quotient set A/ ' is a partion of A.
For any partition B one can define an equivalence relation on A: x 'B
y ⇐⇒ ∃U ∈ B : x ∈ U&y ∈ U . Reflexivity and symmetry follow directly
from the definition, transitivity follows from the fact that the sets in B are
disjoint. The quotient of this relation A/ 'B is B. Vice versa if one starts
from a partition that is the quotient of an equivalence relation ' then the
equivalence relation'A/' is the same as the original. We can conclude that
partitions and equivalence relations are two ways of talking about the same
concept.

(1.23) Example.
If we start from a surjective map f : A → B we can also construct an
equivalence relation a 'f b ⇐⇒ f(a) = f(b). There is a bijection between
A/ 'f and B that maps [[a]] to f(a).

(1.24) Example.
Consider the set L of lines in the Euclidean plane. The relation we consider
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is parallelism: u//v if and only if u and v are parallel lines. It is easy to
check that this is an equivalence relation. The quotient set L/// contains all
parallel classes of lines. There is a nice bijection between L/// and R∪{∞}
that associates to each parallel class the slope of its lines.

(1.25) Example.
Consider the set of integers and choose an integer p. Define'p:= {(a, b)|a−
b is a mulitple of p}. This is an equivalence relation because 0 is a multiple
of p (R), −x is a multiple of p iff x is (S) and the sum of two multiples of p
is again a multiple of p (T).
The quotient set Zp := Z/ 'p consists of p elements: for every 0 ≤ i < p the
set of all integers that have rest i after division by p is an equivalence class.

(1.26) Example.
Consider the set T of all triangles in the plane. Two triangles are equiva-
lent if there is an isometry (translation, rotation, reflexion) of the plane that
transforms the one into the other. This is an equivalence relation because
the identity is an isometry (R), the inverse of an isometry is an isometry (S)
and the composition of two isometries is an isometry (T).
The quotient set T / ' consists of the congruence classes of triangles Note
that there is a nice bijective map from T / ' to

{(a, b, c) ∈ R3|a ≥ b ≥ c&b+ c > a}

(1.27) Example.
Consider the set E× E of couples of points in the Euclidean plane. We say
that (x, y) ∼= (z, w) if there is a translation t : E→ E such that

(t(x), t(y)) = (z, w)

This is an equivalence relation because the identity is a translation (R), the
inverse of a translation is a translation (S) and the composition of two trans-
lations is a translation (T).

(1.28) Example.
More general consider a set A and a set G ⊂ Perm(A) that forms a group
under composition. We say that x ' y if there exists a g ∈ G such that
g(x) = y. Analogously to the previous examples one can show that ' is an
equivalence relation. The equivalence classes are in this case are also called
orbits and the quotient set is denoted by A/G.
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(1.29) Example.
If S is a set with an equivalence relation ∼= and T ⊂ S then ∼=T :=∼= ∩T × T
is also an equivalence relation. The quotient T/ ∼=T can be mapped to S/ ∼=
by

ι : T/ ∼=T→ S/ ∼=: {y ∈ T |y ∼=T x} 7−→ {y ∈ S|y ∼= x}

and this map is an injection.

2.4 Partial orders

A final type of relations that frequently occurs are partial orders

(1.30) A relation≺⊂ S×S is called a partial order if it is reflexive, transitive
and antisymmetric:

∀x, y ∈ S : x ≺ y&y ≺ x =⇒ x = y.

S is called a partially ordered set or poset.

(1.31) Examples.

The set N equiped with the relation smaller than or equal ≤ is a partial
order (as is ≥)

The set N equiped with the relation a|b (a divides b).

The set P(S) equiped with the relation ⊂.

If ≺ is a partial order then its inverse relation ≺−1 is also a partial order.

If S is a set with a partial order ≺ and T ⊂ S then ≺T :=≺ ∩T × T is also a
partial order.

(1.32) Given a partial order ≺⊂ S × S An element s ∈ S is called maximal
if there is no y ∈ S such that x ≺ y and x 6= y.
An element s ∈ S is called minimal if there is no y ∈ S such that y ≺ x and
x 6= y.

(1.33) Examples.

The set N equiped with the relation smaller than or equal has a minimal
element 0.
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The set {x ∈ N|x ≥ 2} equiped with the relation a|b has as minimal ele-
ments all prime numbers and it has no maximal element.

The set P(S) equiped with the relation⊂ has a minimal element, the empty
set, and a maximal element, S.

If ≺ is a partial order then its maximal elements are the minimal elements
of its inverse relation and vice versa.

(1.34) Note that partial orders are called partial because not every two el-
ements in the set can be compared: i.e. there can be pairs of elements a, b
for which neither a ≺ b nor b ≺ a (think of the relation |: 2 6 |3 and 3 6 2. A
partial order is called a total order if two elements are always comparable:

≺ is total ⇐⇒ ∀x, y ∈ S : x ≺ y or y ≺ x.

It is clear that≤ is a total order on N but | is not. ⊂ is also not total on P(S).





Chapter 2

The main characters

Linear algebra is the study of two mathematical objects, vector spaces and
linear maps. In this chapter we introduce both and give lots of examples.
However before starting to talk about vector spaces and linear maps we
need to review some things about fields, because these play a very impor-
tant role in the background. A field is an object that allows you to work
with just like with the ordinary real numbers: you can do addition, sub-
straction, multiplication and division.

1 Fields

(2.1) Definition.
A field is a set K with two operations + : K × K → K and · : K × K → K
such that

• K,+ is a commutative group. We denote the neutral element by 0 and
the ’inverse’ by −x.

• K \ {0} is a commutative group. We denote the neutral element by 1
and the inverse by 1

x .

• the distributive law holds:

∀x, y, z ∈ K : x · (y + z) = (x · y) + (x · z)

(2.2) Examples.
The standard examples are the number fields

• Q,+, ·,

• R,+, ·,

• C,+, ·.
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(2.3) The definition of a field can be relaxed to allow that the multiplica-
tion is not commutative (f.i. the quaternions H) or does not have inverse
elements (f.i. the integers Z) or both (f.i. the 2×2-matrices over R). In these
cases we speak of rings instead of fields.

(2.4) Example.
A slightly more exotic example is the finite field with p elements. To con-
struct this we start from Z equiped with the equivalence relation 'p as laid
out in the previous chapter. The quotient set Zp consists of p elements:

[[0]] = {. . . ,−2p,−p, 0, p, 2p, . . . }
[[1]] = {. . . ,−2p+ 1,−p+ 1, 1, p+ 1, 2p+ 1, . . . }

...
[[p− 1]] = {. . . ,−p− 1,−1, p− 1, 2p− 1, 3p− 1, . . . }

[[p]] = [[0]]
[[p+ 1]] = [[1]]

...

We define the sum and product of classes as

[[a]] + [[b]] := [[a+ b]]
[[a]] · [[b]] := [[a · b]]

These definitions do not depend on the choice of a and b as representatives
for their classes. Indeed if we add a multiple of p to a or b the new sum and
product will differ from the old by a multiple of p.

(2.5) Theorem.
If p is a prime number then Zp,+, · is a field.

Proof. The associativity, commutativity, distributivity, the existence of neu-
tral elements for the multiplication and the addition and the existences of
inverses for the addition follow directly from the fact that these also hold
in Z. The only property that does not hold in Z is the existence of inverses
for the multiplication.
If p is a prime and a is not a multiple of p, we know that the greatest com-
mon divisor of a and p is 1. The algorithm of Euclid provides us with a way
to espress the gcd as a linear combination of a and p

1 = ax+ py with x, y ∈ Z
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If we turn this into an equation of classes

[[1]] = [[ax+ py]] = [[ax]] = [[a]] · [[x]]

we see that [[x]] is the multiplicative inverse of [[a]].

If it is clear that we are working over Zp we usually write a as a shorthand
for [[a]].

(2.6) For any field K, one can consider polynomials in one variable. These
are expressions of the form

f(X) = anX
n + . . . a1X + a0 with ai ∈ F.

The biggest i for which ai 6= 0 is called the degree of f . If the degree is 1
then we call f linear. The set of all polynomials in one variable over K is
denoted by K[X].

(2.7) A root of f is an element u of the field such that f(u) = 0.
In a field a linear polynomial has always a unique root:

u =
−a0

a1

Equations of higher degree have not neccesary solutions and the number
of solutions depend on the field. For instance the equation X2 + 1 = 0 has
no solutions in Q or in R, 2 in C (i and−i) and Z5 ([[2]] and [[3]]) and only one
in Z2 ([[1]]). On the other hand the equationX2−X−1 = 0 has no solutions
in Q or Z2 but 2 solutions in R, C and one in Z5.
For a general field one can say that if f(X) has a as a root then f(X) =
(X − a)g(X) for some polynomial g(X) and a polynomial of degree n has
at most n different roots.

(2.8) Among the fields we have seen the field of complex numbers has a
very special property: every polynomial of nonzero degree has at least one
root.

∀f ∈ K[X] : deg f > 0 =⇒ ∃ainK : f(a) = 0.

Such a field is called algebraically closed. Algebraicly closed fields are very
important because they make certain aspects of linear algebra easier.
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2 Vector spaces

(2.9) Traditionally vectors were used to represent velocity, acceleration,
forces and all kinds of other physical concepts that could be described as
arrows in threedimensional space: quantities with both size and direction.
These objects allowed certain mathematical operations: they could be added
to each other and they could be scaled: multiplied by a real number.
As mathematics developed further, mathematicians began to recognize that
a lot of sets of objects are closed under taking sums and scaling. Examples
of these are solutions system of homogeneous linear equations, or homo-
geneous partial differential equations or certain sets of functions. Such sets
will be called vector spaces and their elements vectors.

(2.10) A vector space is always defined over a field. In this course the field
will almost always be R or C but sometimes we will also consider a finite
field of the form Zp. Where we don’t want to be specific about the field, we
shall call it K.

(2.11) Definition. Vector space
A vector space over a field K is a nonempty set V , equipped with operations
of addition (+) and scalar multiplication by elements of K (that is such that
for any two vectors v, w ∈ V and for any scalar λ ∈ K, the sum v + w and
scalar multiple λv are defined and in V ),
and such that the following axioms hold.

AG The addition + : V × V → V is a commutative group structure on V
with neutral element 0V and inverse inv(v) = −v.

M1 (associativity) for all λ, µ in k, for all v ∈ V , λ(µv) = (λµ)v

M2 for all v ∈ V , 1v = v (where 1 = 1K is the 1 of the field K)

M3 (right distributivity) for all v ∈V, for all λ, µ ∈ K, (λ+ µ)v = λv + µv

M4 (left distributivity) for all v, w ∈V, for all λ ∈ K, λ(v + w) = λv + λw

The axioms simply demand that the addition and scalar multiplication in
V follow the standard rules of arithmetic which we are used to seeing in
sets of vectors over the real numbers.
We can deduce various rules from the axioms such as

0Kv = 0v, (−1)v = −v andλ0v = 0v

for all v ∈ V and for all λ ∈ K, which must then hold in any vector space
(and which we shall frequently use without comment).
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(2.12) Examples. 1. The simplest example is V = {0} with 0 + 0 = 0 and
∀λ ∈ K : λ0 = 0. This is called the trivial vector space or the null space.

2. We have certainly already met the vector spaces R3, of row vectors
with 3 real coordinates, i.e.

{(x, y, z) : x, y, z ∈ R}

Given vectors (x, y, z), (x′, y′, z′) we define

(x, y, z) + (x′, y′, z′) = (x+x′, y+ y′, z+ z′), λ(x, y, z) = (λx, λy, λz)

The zero of this vector space is (0, 0, 0) the inverse of (x, y, z) is (−x,−y,−z).

3. More generally, when n is any positive integer and K any field we
define the vector space Kn to be the set of all row vectors with n co-
ordinates each from K, i.e.

{x1, x2, . . . xn) : xi ∈ K}

(we often call that the set of n-tuples over K), where addition and
scalar multiplication are defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

and
λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

In this example
0V = (0k, 0k, . . . , 0k)

and
−(x1, x2, . . . , xn) = (−x1,−x2, . . . ,−xn)

. We could also see the elements of Kn as column vectors; and some-
times we shall do this.

4. Similarly we can define KN to be the set of all sequences over k, with
addition and scalar multiplication defined coordinatewise. Then 0V
is the sequence consisting only of zeros, and and

−(x1, x2, . . . , ) = (−x1,−x2, . . . , )

.

5. For any field K, and integers m,n, the set of m×n matrices (xij) with
xij in K is a vector space when we define

(xij) + (yij) = (xij + yij)



18 The main characters

and
λ(xij) = (λxij)

(i.e. usual addition and scalar multiplication of matrices).

0V is the m× n matrix of zeros, and −v is formed by negating all the
entries in the matrix v.

6. The set of all maps f : R → R is a vector space, where for maps f, g
and λ ∈ R we define f + g and λf by the rules

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x)

The zero map and the negative −f of f are defined by the rules

0(x) = 0 (−f)(x) = −(f(x)

And we have another example if we replace R by C here.

7. Using the same addition and scalar multiplication we see that the
set of all continuous functions from R to R, C0(R), and the set of all
differentiable functions from R to R, C1(R), are vector spaces over
R. To verify this we need to check that when f, g are continuous (or
differentiable) then so is f + g, and so is λf , for any λ ∈ R.

8. The set R[x] of all polynomials in x with real coefficients is a vector
space over R, where addition and scalar multiplication are defined by
the rules

(a0 + ax + . . .+ anx
n) + (b0 + b1x+ . . .+ bnx

n)
= (a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)xn

λ(a0 + a1x+ . . .+ anx
n)

= λa0 + λa1x+ . . . λanx
n

Of course this addition and multiplication are the addition and mul-
tiplication defined above for functions.

9. The set of vectors (x, y, z) that are solutions to a linear equation such
as x + y + z = 0 is a vector space under the standard addition and
multiplication of vectors in R3. We just have to verify that the sum of
two solutions and a scalar multiple of a solution are also solutions.

More generally the set of vectors (x1, . . . xn) that are solutions to a
system of linear equations

a11x1 + a12x2 + . . . a1nxn = 0
a21x1 + a22x2 + . . . a2nxn = 0
a31x1 + a32x2 + . . . a3nxn = 0

...
...

... = 0
am1x1 + am2x2 + . . . amnxn = 0
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is a vector space

10. The set of functions f that are solutions to the differential equation

f”(x) + 3f ′(x) + 2f(x) = 0

is a vector space over R (also over C). We need to verify that the sum
of two solutions is a solution, and that a scalar multiple of a solution is
a solution. This is easy to verify and is a consequence of the linearity
of the equation.

11. The set P(Ω) of all subsets of a set Ω, where the sumA+B of two sets
A,B is defined to be its symmetric difference, that is

A+B = (A ∪B) \ (A ∩B)

is a vector space over the field of two elements Z2, The axioms force
scalar multiplication to be defined as follows:-

1A = A, 0A = ∅

12. Let A be any set and let KA be the set of all maps from A to K and
define for f, g : A→ K

f + g : A→ K : a 7−→ f(a) + g(a)
λ · f : A→ K : a 7−→ λf(a)

The set of all maps for which only a finite number of elements in A
map not to zero also form a vector space with the same operations.

13. Let V be the set E× E/ ' from example 1.27. We can turn this into a
vector space over R if we define the addition by

[[(p, q)]] + [[(q, r)]] = [[(p, r)]]

(note that for every class we can choose a representative starting in a
given point q) and scalar multiplication by

λ[[(p, q)]] = [[(φλp, φλq)]]

where φλ is a scaling with factor λ.

14. Let V = {x ∈ R|x > 0} be the set of positive real numbers. We turn
this into a vector space over R by putting

x+ y := xy and λ · x := xλ.
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15. If V and W are two vector spaces, we define

V ⊕W := V ×W with
(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and
λ(v, w) = (λv, λw)

V ⊕W is a vector space and it is called the direct sum of V and W .

(2.13) Aside.
We end this section with some near misses.

• The set V = R2 with the standard vector addition and scalar multi-
plication defined as,

λ(x1, x2) = (x1, λx2)

is NOT a vector space. One can check that all axioms hold except M3:

(x1, (λ+ µ)x2) 6= (x1, λx2) + (x1, µx2) = (2x1, (λ+ µ)x2).

If we define
λ(x1, x2) = (0, λx2)

then all axioms hold except M2.

• Another way that V can fail to be a vector space is although all axioms
hold, the object K is not a field. If K is still a ring then we call V a
module. Modules are very close to vector spaces but there are some
big structural differences too.

The additive group Zp,+ can be considered as a module over Z by
putting n · x = x + · · · + x (n times). This is an example of a module
that unlike a vector space does not have a basis (see chapter ??).

The space Mat2×1(R) of real 2 × 1-matrices can be seen as a module
over the ring of real 2× 2-matrices where we use the standard matrix
addition and multiplication. (Note that Mat2×1 is also a vector space
over R)

3 Linear maps

(2.14) Let V and W two vector spaces over the field K. A map φ : V → W
is called a linear map if it is compatible with the two operations:

(i) ∀x, y ∈ V : φ(x+ y) = φ(x) + φ(y)

(ii) ∀x ∈ V : ∀λ ∈ K : φ(λx) = λφ(x)
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We can pack condition (i) and (ii) together in one condition:

(*) ∀x, y ∈ V : ∀λ, µ ∈ K : φ(λx+ µy) = λφ(x) + µφ(y)

(2.15) Examples. 1. Let V be the vector space of all 3× 1-matrices, W be
the vector space of 4×1 matrices and A be any 4×3-matrix. The map

φA : V →W : x→ Ax

is a linear map.

2. The map d
dx : C1(R)→ C0(R) : f 7−→ df

dx is linear.

3. Let g be any continuous function. The map Rg : C0(R) → C0(R) :
f 7−→ f ◦ g is linear. on the other hand the Rg : C0(R) → C0(R) :
f 7−→ g ◦ f is only linear if g(x) = λx for some λ ∈ R

4. The map zero map 0 : V → W : x 7−→ 0 is linear and a constant map
is linear if and only if it is the zero map.

5. Let S be a set and s ∈ S. The map

ιs : P(S)→ Z2 : X 7−→

{
1 s ∈ X
0 s 6∈ X

and the map

ν : P(S)→ Z2 : X 7−→

{
1 #Xis odd
0 #Xis even

are linear.

6. For any subset Y ⊂ S the map P(S)→ P(S) : X 7−→ X ∩ Y is linear
but the map P(S)→ P(S) : X 7−→ X ∪ Y is not.

7. V be the set E× E/ ' from ??. If φ is an isometry of the plane then

V → V : [[(x, y)]] 7−→ [[(φ(x), φ(y))]]

is linear.

8.

9. If V and W are two vector spaces and f : V1 → V2 and g : W1 → W2

are two linear maps. We define

f ⊕ g : V1 ⊕W1 → V2 ⊕W2 : (v, w) 7−→ (f(v)⊕ f(w)).

This linear map is called the direct sum of f and g.
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(2.16) The set of all linear maps from V to W is denoted by Hom(V,W ).
Hom(V,W ) is itself a vector space. We can add two linear maps φ and ψ

φ+ ψ : V →W : x 7−→ φ(x) + ψ(x)

and multiply a map with a scalar.

λφ : V →W : x 7−→ λφ(x)

Both maps are linear (take care for the second map one needs de commu-
tativity of the multiplication in the field, so this does not hold for modules)
and one can easily check the axioms for a vector space.

(2.17) If we have two linear maps φ : V → W and ψ : W → Z then the
composition

ψ ◦ φ : V → Z : x 7−→ ψ(φ(x))

is also a linear map.
If a linear map is a bijection then the inverse of this map is also linear:

φ(λφ−1(x) + µφ−1(y)) = λφ(φ−1(x)) + µφ(φ−1(y)) = λx+ µy

so
λφ−1(x) + µφ−1(y) = ψ−1(λx+ µy).

For any vector space V the set of linear bijections is denoted by GL(V ).
The composition of two elements in GL(V ) is again an element of GL(V )
and also the inverse of an element is in GL(V ). Therefore GL(V ) is a group
(the neutral element is the identity element and the associativity follows be-
cause the composition of maps is always associative). This group describes
all symmetries of the vector space V . Unlike Hom(V, V ) the set GL(V ) is
not a vector space.

4 The main problems of linear algebra

We now have defined two major objects vector spaces and linear maps.
A natural question one can ask is then can we describe or classify these
objects.
Describing all vector spaces is a hopeless business as there are so many.
Luckily this is not neccesary because many vector spaces look alike: they
have the same structure, only their elements have different names.
To make the concept of vector spaces that look alike more formal we intro-
duce the concept of isomorphic vector spaces
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(2.18) Definition.
We will call two vector spaces isomorphic if there is a bijective linear map
between them.

V ∼= W ⇐⇒ ∃φ ∈ Hom(V,W ) : φ is a bijection.

Any linear bijection is also called an isomorphism.

(2.19) If we have a set of vector spaces 1 then the relation∼= gives an equiv-
alence relation on this set.

• Reflexivity: the identity map is a linear bijection.

• Symmetry: the inverse of a linear bijection is again a linear bijection.

• Transitivity: the composition of two linear bijection is again a linear
bijection.

(2.20) Examples.

The vector space R3 and the vector space V = {a0 + a1X + a2X
2|ai ∈ R3}

are isomorphic because the map

φ : R3 7−→ V : (λ, µ, ν) 7−→ λ+ µX + νX2

is a linear bijection.

The vector space C1
0 := {f ∈ C1(X)|f(0) = 0} is isomorphic with C0(X)

because the linear map

d

dt
: C1

0 → C0 : f → d

f
dt

has an inverse ∫
: C0 → C1

0 : f →
∫ x

0
f(t)dt.

The vector space Maps(S,Z2) and the vector space P(S) are isomorphic
because

φ : Maps(S,Z2)→ P(S) : f 7−→ {x ∈ S|f(x) = 1}

is linear with inverse

φ−1 : P(S)→ Maps(S,Z2) : X 7−→ f such that f(x) = 1 ⇐⇒ x ∈ X.
1We have to specify a set of vector spaces because the collection of all vector spaces is

not a set
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The real solutions V of the linear equation x+ y + z = 0 and the real solu-
tions W of the differential equation f“ + f = 0 are isomorphic by the linear
map

φ : W → V : f 7−→ (f(0), f ′(0), f ′′(0)− f ′(0))

the inverse of which is

φ−1 : V →W : (a, b, c) 7−→ a cos t+ b sin t

The main questions now become:

(2.21) Question.
Can we classify the isomorphism classes of vector spaces and can we find for every
class a nice representative?

(2.22) Question.
Given two nice representatives of isomorphism classes of vector spaces can we de-
scribe the linear maps between them?



Chapter 3

Finite Dimensional Vector
Spaces

1 Subspaces and spans

Some of the examples we have given of vector spaces live inside other vec-
tor spaces.

(3.1) Definition.
Let V be a vector space over a field K. A subset X ⊂ V is called a sub-
space if X is a vector space with the addition and scalar multiplication are
inherited from V .

If one wants to find out whether a certain nonempty set is indeed a sub-
space, one first needs to check whether the addition and scalar multiplica-
tion are well defined on X :

(i) ∀x, y ∈ X : x+ y ∈ X ,

(ii) ∀λ ∈ K : ∀x ∈ X : λx ∈ X ,

Once these two conditions are checked the axioms M1-M4 are automati-
cally fullfilled in X because they are fullfilled in V . To check the group
axioms [AG] we have to be a bit more carefull: associativity and commuta-
tivity follow directly from V and we can infer that the neutral element and
inverse elements are in X because we can write them as 0 ·x and−1 ·x and
then use (ii).
Conditions (i) and (ii) together are equivalent to the condition

∀v, w ∈ X : ∀λ, µ ∈ K : λv + µw ∈ X. (∗)

so a nonempty subset X ⊂ V is a subspace if and only if (∗) holds.
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(3.2) Examples. 1. For any vector space V , {0} and V itself are both sub-
spaces.

2. The set of solutions (x, y, z) to the equation x+y+z = 0 is a subspace
of R3, and in general so is the set of solutions to a set of homogenous
linear equations (see examples 2.12).

3. The spaces C0(R) of all continuous functions, all differentiable func-
tions, all polynomial functions R([x]) with coefficients in R are sub-
spaces of the space of all functions from R to R. The space of all
solutions to f ′′(x) + 3f ′(x) + 2f(x) = 0 is a subspace of the space of
all functions from R to R (or from C to C)..

4. For any integer n the set of polynomials of degree at most n is a sub-
space of R[x], the space of all polynomials.

5. The set of all functions of the form a sin(x + b) with a, b ∈ R form a
subspace of C0(R).

6. For any vectors v, w in a vector space V over k,

{λv : λ ∈ k} and {λv + µw : λ, µ ∈ k}

are subspaces of V . These two examples are part of a larger example
which we shall reach soon.

7. Consider the vector space P(S) over Z2. The set of subsets of S with
an even number of elements is a subspace. The subset of all sets
where the number of elements is a multiple of 3 is not a subspace.

Given two subspaces of a vector space, their intersection and sum (not
union) always gives us two new ones.

(3.3) Proposition.
Suppose that V is a vector space over k and X and Y are subspaces of V . Then

(i) X ∩ Y is also a subspace of V (and of both X and Y ).

(ii) where X + Y = {x+ y : x ∈ X, y ∈ Y }, X + Y is a subspace of V

Proof. Both the intersection aand sum contain 0 so we only need to check
(*). For the intersection this follows from the fact that (*) holds for X and Y
so λu+ µv sits in X and Y and hence in the intersection.
For the sum we see that if x1, x2 ∈ X and y1, y2 ∈ Y then

λ(x1 + y1) + µ(x2 + y2) = (λx1 + µx2)︸ ︷︷ ︸
∈X

+ (λy1 + µy2)︸ ︷︷ ︸
∈Y

∈ X + Y
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If we look at the direct sum we see that the vector spaces (V, 0) and(0,W )
are subspaces of V ⊕W . It is clear that their intersection is the null space
(0, 0).

We can generalise the last of our examples from 3.2

(3.4) Definition. Linear combinations, spans
Let V be a vector space (over K). Any vector λ1v1+λ2v2+. . . λmvm is called
a linear combination of v1, v2, . . . vm ∈ V .
For any subset X the set of all linear combinations of elements of X

〈X〉 = {
∑

λivi : λi ∈ K&vi ∈ X}

is called the span of X . For the emptyset we define 〈∅〉 = {0}.

We can also write 〈{v1, . . . , vm}〉 as 〈v1, . . . , vm〉, that is, the brackets {, } are
not necessary.

(3.5) Proposition.
〈X〉 is a subspace of V . Indeed it is the smallest subspace containing X .

Proof. To prove the first statement we check condition (*). To prove the
second, we simply have to verify that any subspace containing X must
contain λ1v1 + . . . + λtvt, for any t ∈ N, which can be proved by induction
on t.

(3.6) Examples. 1. In R3, define e1 to be the vector (1, 0, 0), e2 to be the
vector (0, 1, 0). Then 〈e1, e2〉 is the set of all vectors of the form (x, y, 0),
which we often call the xy-plane.

2. In k[x], 〈1, x, x2〉 is the subspace of all polynomials of degree at most
2, and 〈x, x2〉 is the subspace of all polynomials of degree at most 2
that take the value 0 at 0.

3. In kn let ei be the vector with a 1 as its i-th coordinate and a 0 every-
where else, so that

e1 = (1, 0, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . en = (0, 0, 0, . . . , 0, 1).

The 〈e1, e2, . . . , en〉 is the whole of kn.

4. Let P ⊂ P(S) the set of all subsets of S with 2 elements. The span
of P is the subspace containing all the sets with an even number of
elements
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5. If v ∈ V then we will also write Kv instead of 〈v〉 because 〈v〉 :=
{λv|λ ∈ K}

6. Consider the vector space KN and the elements ei which are zero
everywhere except on the ith entry where there is a one. The span
〈e1, e2, . . .〉 is not equal to KN but it is the subspace of vectors with
only a finite number of nonzero entries.

(3.7) Proposition.
If S and T are subsets of V then

• 〈S ∪ T 〉 = 〈S〉+ 〈T >

• 〈S ∩ T 〉 ⊂ 〈S〉 ∩ 〈T > (but they are not always equal)

• 〈〈S〉〉 = 〈S〉

• 〈S〉 = S if and only if S is a subspace.

(3.8) Definition. Spanning sets
Suppose that U is a subspace of a vector space V . A set X of vectors whose
span is equal to U is called a spanning set for U . We also say that U is
spanned by X .

Looking at the examples above,we see that {e1, e2} is a spanning set for the
xy-plane, {1, x, x2} is a spanning set for the space of polynomials of degree
at most 2, {e1, e2, . . . en} is a spanning set for kn.
Every vector space has a spanning set: the vector space itself. But this is
spanning set is not interesting. The interesting spanning sets are those that
are as small as possible.

(3.9) Definition.
A spanning set S of a vector space V is minimal if and only if no subset
T ⊂ S is a spanning set of V .

Note that the set of spanning set of V forms a partially ordered set with ⊂.
The minimal spanning sets are the minimal elements of this poset.
A minimal spanning set for a vector space has some very special properties.
In order to study these we need to look at the concept of linear dependence.
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2 Linear dependence

(3.10) Definition.
Suppose that V is a vector space over K We say that the set of vectors
{v1, v2, . . . , vm} in V is linearly dependent if for some λ1, λ2, . . . , λm, not
all zero,

λ1v1 + λ2v2 + . . .+ λmvm = 0.

We say that the set of vectors is linearly independent if it is not linearly
dependent.

Notice that the empty set is linearly independent by definition. An infinite
set of vectors is called linearly independent if every finite subset is linearly
independent.

(3.11) Proposition.
Suppose that v1, v2, . . . , vm are vectors in a vector space V . Then {v1, v2, . . . , vm}
is linearly independent if and only if any vector v in 〈v1, v2, . . . , vm〉 has a unique
representation as a linear combination

v = α1v1 + α2v2 + . . .+ αmvm

Proof. We’ll prove the equivalent result that the vectors v1, v2, . . . , vm are
linearly dependent if and only if there is at least one vector in 〈v1, . . . , vm〉
with more than one representation as a linear combination of those vectors.
Linear dependence implies that the zero vector has at least 2 representa-
tions: i.e. all αi are zero or the coefficients coming from the linear combina-
tion that gives zero.
On the other hand suppose that w = λ1v1 + · · ·+λmvm = µ1v1 + · · ·+µmvm
with at least one λi 6= µi then

0 = (λ1 − µ1)v1 + · · ·+ (λm − µm)vm

at least one of the (λi − µi) is nonzero so the v1, . . . , vm are linearly depen-
dent.

Proposition 3.11 explains why linearly independent sets of vectors are use-
ful. We have already met some very natural examples of linearly indepen-
dent sets.

(3.12) Examples. 1. In Kn, e1, e2, . . . , em are linearly independent for all
m ≤ n. ( Recall that we defined ei to be the vector with its K-th
coordinate equal to 1, and all other entries 0.)

For λ1e1 + λ2e2 + . . .+ λmem = (λ1, . . . , λm)
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2. In R3, e1 = (1, 0, 0), e1 + e2 = (1, 1, 0) and e1 + e2 + e3 = (1, 1, 1) are
linearly independent. As the system of linear equations

α1 + α2 + α3 = 0
α2 + α3 = 0

α3 = 0

3. 1, x, x2, x3, . . . , xn are linearly independent in K[x].

4. If X1, . . . , Xn are disjoint subsets of S then they are linearly indepen-
dent in P(S).

5. If S has an odd number of elements then the sets S \ {x}where x ∈ S
are linearly independent, if S has an even number of elements then

6. {sin(kx)|k ∈ N} are linearly independent in C1(R). Indeed if f(x) =∑
k≤N λk sin(kx) = 0 then∫ 2π

0
sin(`x)f(x) =

λ`
π

= 0

7. Choose {u1, . . . , un} ⊂ R and let fi(X) = (X−u1)...(X−un)
( X − ui).

These fi are linearly independent. Indeed if f(X) = λ1f1 + λnfn = 0
then f(ui) = (ui−u1)...(un−un)

( ui − ui)λi = 0 and as the factor before λi
is nonzero, λi must be zero.

(3.13) Proposition.
A set S is linearly independent if and only if S is a minimal spanning set of 〈S〉.

Proof. If S were not minimal, then there is a v ∈ S such that v ∈ 〈S \ {v}〉
so we can write v = λ1w1 + · · ·+ λmwm with wi ∈ S \ {v}. The vectors in S
are linear dependent because λ1w1 + · · ·+ λmwm + (−1)v = 0
Vice versa suppose that λ1v1 + · · ·+ λmvm = 0 for some vi ∈ S with λj 6= 0
then vj ∈ 〈S \ {vj}〉 because

vj =
−λ1

λj
v1 + · · ·+ −λm

λj
vm.

so 〈S \ {vj}〉 = 〈S〉 and hence S is not minimal.

(3.14) Aside.
By this theorem a minimal spanning set and a linear independent spanning
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set are the same thing. This is only the case for vector spaces, not for mod-
ules over a ring. The reason for this is that in a ring one cannot always find
an inverse for λj . For instance the Z-module Z15 has minimal spanning sets
{1} and {3, 5} but neither set is a basis because in Z15 we have that

0 = 15 · [[1]] = 5 · [[3]] + 3 · [[5]].

So the sets are not linearly independent. In this example there are no
nonempty linearly independent subsets of Z15.

3 Bases

(3.15) Definition.
If V is a vector space over K, a basis (or base) for V is a linearly independent
spanning set of V .

NB. The plural of basis is bases - one basis, two bases.

(3.16) Definition.
The dimension of a vector space V , dim(V ) is defined to be the minimal
size of a basis, if V has a finite basis, otherwise it is infinite.

In fact if V has a finite basis, then every basis has the same size. We’ll prove
that soon in theorem 3.22, but aren’t quite ready to do that yet.

(3.17) Examples.
{e1, . . . , en} is a basis for Kn, so is {e1, e1+e2, e1+e2+e3, . . . e1+e2+. . . en}.
Theorem 3.22 will tell us this space is n-dimensional.
1, x, x2, . . . is a basis for K[x] and 1, x, x2, . . . , xn a basis for the subspace of
K[x] consisting of all polynomials of degree at most n. Theorem 3.22 will
tell us this space is n+ 1-dimensional.
{ex, e2x} is a basis for the set of solutions to the differential equation

f ′′(x)− 3f ′(x) + 2f(x) = 0.

{eix, e−ix} and {cos(x), sin(x)} are two different bases for the set of solu-
tions to the differential equation

f ′′(x) + f(x) = 0.

Theorem 3.22 will tell us this subspace of the space of all functions from C
to C is 2-dimensional.
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Both {(1, 0, 2, 1), (0, 1,−6,−1), (0, 0, 9, 5)} and {(1, 0, 2, 1), (3, 1, 0, 2), (0, 1, 3, 4), }
are bases for the subspace of R4 spanned by {(1, 0, 2, 1), (3, 1, 0, 2), (0, 1, 3, 4), (5, 1, 4, 4), (5, 0, 1, 0)}
(see examples ??). Theorem 3.22 will tell us this subspace of R4 is 3-dimensional.

If v1, . . . , vn ⊂ V is a basis for V and w1, . . . , wm is a basis for W then
(v1, 0), . . . , (vn, 0), (0, w1), . . . , (0, wm) is a basis for V ⊕W .

(3.18) Proposition.
Any finite spanning set for a vector space V contains a basis.

Proof. Let S0 = {v1, v2, . . . , vn} be a spanning set for V . If it is not minimal
then there is a vi ∈ S such that vi ∈ 〈S \ {vi}〉. We remove vi from S to
obtain a new spanning set. If this new set is not minimal we again remove
an element. Because S is finite we can only do this a finite number of times
until we get a minimal spanning set which is a basis.

The following result is tremendously useful, with lots of consequences.
In this section we show that every linearly independent subset of a finite
dimensional vector space can be extended to a basis.

(3.19) Lemma. The exchange lemma
LetA = {x1, x2, . . . xr} be a finite linearly independent set andC = {y1, y2, . . . , ys}
a finite spanning set in a vector space V . Then there is a subset C ′ of C such that
A ∪ C ′ is a spanning set of V , of the same size as C.

Proof. We construct C ′ in r steps, as the last in a sequence of sets

C0 = C,C1, . . . Cr = C ′

We formC1 by deleting from {x1}∪C the first element inC (using the order
given) which is in the span of its predecessors in C together with x1. There
must be such an element by proposition ?? since C spans and so {x1} ∪ C
is linearly dependent.
Then we simply iterate this process, i.e. for each i = 1, . . . r − 1, we form
Ci+1 out of Ci by deleting the first element out of Ci which is in the span of
its predecessors in Ci together with x1, x2, . . . , xi, xi+1. Again proposition
?? ensures we can find such an element, since {x1, x2, . . . xi} ∪Ci is a span-
ning set, so {x1, . . . , xi+1} ∪ Ci is linearly dependent; but the linear depen-
dence of A ensures that none of the xj ’s is in the span of x1, . . . , xj−1.

(3.20) Corollary.
If V is a finite dimensional vector space then any linearly independent set of vectors
in V can be extended to a finite basis.
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Proof. We just apply the exchange lemma (3.19) with A as the linearly inde-
pendent set, C as a finite basis.

3.1 Dimension-Basis Theorem

The Dimension-Basis theorem (3.22) is easily derived from a corollary of
the exchange lemma.

(3.21) Corollary.
Let A be a finite linearly independent set and C a finite spanning set of vectors in
a vector space V . Then |A| ≤ |C|.

Proof. Let C ′ be as in the exchange lemma. Then A is a subset of A ∪ C ′,
which has the same size as C. So |A| ≤ |A ∪ C ′| = |C|.

(3.22) Theorem. Dimension-Basis theorem
If V is a finite dimensional vector space, every basis contains the same number of
elements.

Proof. Let B be a finite basis, and B′ a second basis. Then B′ must also be
finite. For any finite subset A of B′ is linearly independent, and corollary
3.21 then tells us that |A| ≤ |B|. But an infinite set can’t have a bound on
the size of its finite subsets. So B′ is finite, and in that case, by corollary
3.21, |B′| ≤ |B|.
Now applying the same argument toB′ andB (rather thanB andB′) gives
|B| ≤ |B′|.

(3.23) Examples. • The dimension of Kn is n.

• The dimension of the set of solutions of f ′′ − 3f ′ + 2f = 0 is 2.

• The dimension of {Asin(x + B)} is 2 because {sin(x), sin(x + π/2)}
is a basis.

• The dimension of P(S) equals the number of elements in S.

• The dimension of the space of all continuous functions is infinite be-
cause 1, x, x2, . . . is a set of linear independent functions.

• The dimension of the space of all polynomial functions is infinite be-
cause 1, x, x2, . . . is a basis.

• DimV ⊕W = DimV + DimW
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(3.24) Theorem.
Two finite dimensional vector spaces over K are isomorphic if and only if they have
the same dimension.

Proof. If V andW have the same dimension nwe can find two bases {v1, . . . , vn} ⊂
V and {w1, . . . , wn}. The map

φ : V →W : λ1v1 + · · ·+ λnvn 7−→ λ1w1 + · · ·+ λnwn

is welldefined because every element in V has a unique presentation as a
linear combination of the vi. One can also check that it is linear. Finally, it
is bijective because its inverse is the map

φ−1 : V →W : λ1w1 + · · ·+ λnwn 7−→ λ1v1 + · · ·+ λnvn

Conversely if φ : V → W is an isomorphism then the image of a basis is
again a basis. The original basis spans V and because φ is surjective the
image of the basis spans W . The image of the basis is linearly independent
because if there were a linear combination of the new basis that is zero then
its image under φ−1 would give a linear combination of the original basis
that is zero.

We have now completed the task of classifying all finite dimensional vector
spaces up to isomorphism. Every finite dimensional vector space is isomor-
phic to Kn for some n.

(3.25) Aside.
What about infinite dimensional vector spaces? Using standard set theory
with the axiom of choice, one can show that every vector space has a basis,
so infinite dimensional vector space have an infinite basis. But this does
not mean that all infinite dimensional vector spaces are isomorphic. Some
have bigger bases then others.
The correct way to restate the last theorem to infinite dimensional vector
spaces is that V and W are isomorphic if and only if there exists a bijection
between their bases.
For instance the space of maps from N to the reals that are zero for large
N ∈ N

V = {φ : N→ R|∃N > 0 : ∀x > N : φ(x) = 0}

is an infinite dimensional vector space with basis

φi : N→ R : φi(j) =

{
1 i = j

0 i 6= j
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This space is isomorphic to to the space of polynomials R[X] because there
is a bijection between

φi 7−→ xi.

The vector space ZN
2 is not isomorphic to Z2[X]. Suppose ψ : Z2[X] → ZN

were a linear bijection then we have a map ψ′ from N→ ZN by demanding
that

ψ′(n) = u ⇐⇒ ∃f ∈ Z2[X] : f(2) = n and ψ(f) = u.

By f(2) we mean the number that we calculate from f by filling in 2 and
working in Z not in Z2 (e.g if f(X) = [[1]] + [[1]]X2 then f(2) = 5). Note that
the assignment f 7−→ f(2) is a bijection and therefore ψ′ is also a bijection.
However, the map ψ′ cannot be not surjective because the vector

w = (ψ′0(0) + 1, ψ′1(1) + 1, ψ′2(2) + 1, . . . )

where ψ′j(i) means the jth entry of the vector ψ(i). Indeed w 6= ψ′(j) be-
cause wj 6= ψ′j(j). This argument is called Cantor’s diagonalizations ar-
gument So we can conclude that not all infinite dimensional vector spaces
over the same field are isomorphic.
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Maps and matrices

In this chapter, we shall assume that the vector space V and W are finite
dimensional.

(4.1) Definition.
Suppose that V and W are finite dimensional vector spaces over k with
bases {v1, v2, . . . , vn}, {w1, w2, . . . , wm}, and suppose that f is a linear map
from V to W . Let A be the m× n matrix A over k whose i-th column

a(i) =


a1i

a2i
...
...
ami


is defined by

f(vi) = a1iw1 + a2iw2 + . . .+ amiwm.

ThenA is called the matrix of f with respect to the basis {v1, . . . , vn}, {w1, . . . , wm}.

We’ll illustrate this with a simple example, and do further examples in a
little while when we’ve understood the point of this definition.

(4.2) Example.
Let f : R3 → R2 be defined by the rule

f(a, b, c) = (a+ 2b, c− a)

We can compute the matrix of f with respect to the standard bases e1, e2, e3
of R3 and e1, e2 of R2.
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Since

f(e1) = f(1, 0, 0) = (1,−1)
f(e2) = f(0, 1, 0) = (2, 0)
f(e3) = f(0, 0, 1) = (0, 1)

we see that the matrix is

A =
(

1 2 0
−1 0 1

)

(4.3) Proposition.
Suppose that A is the matrix of a linear mapping f : V → W between finite di-
mensional vector spaces with bases {v1, v2, . . . , vn}, {w1, w2, . . . , wm}. Suppose
that x and y are the column vectors of coefficients of a vector

∑n
i=1 xivi of V and

its image under f ,
m∑
i=1

yiwi = f

(
n∑
i=1

xivi

)
,

that is

x =


x1

x2
...
...
xn

 , y =


y1

y2
...
ym

 .

Then x and y are related by the equation

Ax = y.

Proof.

m∑
i=1

yiwi = f(
n∑
j=1

xjvj) = f(x1v1 + x2v2 + . . .+ xnvn)

= x1f(v1) + x2f(v2) + . . .+ xnf(vn)
= (x1a11 + x2a12 + . . .+ xna1n)w1

+ (x1a21 + x2a22 + . . .+ xna2n)w2

+ . . . . . .+ . . . . . .+ . . . . . .

+ . . . . . .+ . . . . . .+ . . . . . .

+ (x1am1 + x2am2 + . . .+ xnamn)wm
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Comparing the coefficients of w1, w2, . . . in the left and right hand side of
this equation, we see that

y1 = x1a11 + x2a12 + x3a13 + . . .+ . . .+ xna1n

y2 = x1a21 + x2a22 + x3a23 + . . .+ . . .+ xna2n

etc. which we can write as a vector equation,
y1

y2
...
...
ym

 = x1


a11

a21
...
...

am1

+x2


a12

a22
...
...

am2

+. . .+. . .+xn


a1n

a2n
...
...

amn

 = x1a
(1)+x2a

(2)+. . .+xna(n)

and we have already observed, in subsection ?? that the right hand side of
this is the matrix product Ax.

(4.4) Examples. 1. Suppose that V is the space of all polynomials over k
of degree at most n and W is the space of all polynomials over k of
degree at most n + 1. Let f : V → W be the mapping defined by
f(p(x)) = xp(x).

We shall write down the matrix with respect to the bases {1, x, x2, . . . , xn}
for V and {1, x, x2, xn+1} for W ,

We can verify that matrix multiplication gives the correct image for a
polynomial

a0 + a1x+ a2x
2 + . . . anx

n

2. Let V and W be as above, and let f be the mapping from V to W
defined by f(p(x)) = (x+ 2)p(x).

We can write down the matrix with respect to the bases {1, x, x2, . . . , xn}
for V and {1, x, x2, xn+1} for W ,

3. Let V be as above, and let f be the mapping from V to V defined
by f(p(x)) = p(x+ 1). We’d like to write down the matrix for f with
respect to {1, x, x2, . . . xn}. This is a little harder, so we’ll restrict to the
case n = 5. Once we’ve done this, it’s clear what happens in general.

4. Let V and W both be equal to the space of polynomials of degree at
most n, with basis {1, x, x2, . . . , xn}, and let f be the mapping from V
toW defined by f(p(x)) = p′(x) (the derivative of p(x). Then f(xj)) =
jxj−1 for each j ≥ 0, and so we can easily write down the matrix for
f .
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5. Let f : V1 → V2 and g : W1 → W2 be represented by the matrices A
andB for certain bases. These bases give rise to bases for V1⊕W1 and
V2 ⊕W2 and the map f ⊕ g is represented by the matrix(

A 0
0 B

)
Where the 0 stands for a block of zeros of the appropriate size. We
denote this matrix by A⊕B.

(4.5) Proposition.
Let U, V,W be vector spaces over k, with bases {u1, u2, . . . , un}, {v1, . . . , vm},
{w1, . . . , wl}, and let f : U → V , g : V → W be linear mappings represented
with respect to the given bases by matricesA andB. Then the composite map g ◦f
is represented by the matrix BA.

Proof. We simply have to compute (g◦f)(uj) and verify that its coordinates
are the entries in column j of BA.
Now

(g ◦ f)(uj) = g(f(uj)) = g(
m∑
k=1

Akjvk) =
m∑
k=1

Akjg(vk)

=
m∑
k=1

Akj(
l∑

i=1

Bikwi) =
m∑
k=1

l∑
i=1

AkjBikwi

=
l∑

i=1

m∑
k=1

AkjBikwi we can change the order of summation

=
l∑

i=1

m∑
k=1

BikAkjwi we can change the order within each product

=
l∑

i=1

(BA)ijwi

1 Base change

(4.6) Proposition.
Suppose that V,W are vector spaces over k. Let {v1, . . . , vn} be a basis of V , and
suppose that w1, . . . , wn are elements ofW . Then there is a unique linear mapping
f : V →W with f(vi) = wi for each i.
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Proof. Define f by f(
∑n

i=1 λivi) =
∑n

i=1 λivi. Then f is well defined as a
mapping from V toW since each element of V can be uniquely represented
as a sum

∑n
i=1 λivi.

To verify linearity notice that

f(α
n∑
i=1

λivi) = f(
n∑
i=1

αλivi)

=
∑

(αλi)wi

= α
∑

(λiwi)

= αf(
∑

λivi)

and also that

f(
n∑
i=1

λivi +
∑
i=1

µivi) = f(
∑

(λi + µi)vi)

=
∑

(λi + µi)wi

=
∑

λiwi +
∑

µiwi

= f(
∑

λivi) + f(
∑

µivi)

f must be unique, since any linear mapping satisfying f(vi) = wi has to
satisfy

f(
∑

λivi) =
∑

λif(vi) =
∑

λiwi

(4.7) Corollary. (Rather obvious?)
A linear mapping from a vector space V to itself is the identity if it fixes a basis of
V .

(4.8) Proposition.
Let V be a vector space over k with basis {v1, v2, . . . vn}, let w1, . . . , wn be ele-
ments ofW , and let f be the linear mapping V →W defined by f(vi) = wi. Then
f is

• surjective if and only if 〈w1, . . . , wn〉 = W ,

• injective if and only if w1, . . . , wn are linearly independent,

• bijective (=invertible) if and only if w1, . . . , wn is a basis for W ,
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Proof. The first assertion follows from the fact that

Im f = {f(v)|v ∈ V } = {f(
∑
i

aivi)|ai ∈ K} = {
∑
i

aiwi|ai ∈ K} = 〈w1, . . . , wn〉

The second holds because
∑

i aiwi = 0 if and only if f(
∑

i aivi) = 0 i.e.∑
i aivi ∈ Ker f . The third statement is a combination of the first two.

(4.9) Corollary.
Suppose that V is a vector space over k with basis {v1, . . . , vn}. Then where A is
an n×n matrix over k, {

∑n
i=1Aijvi} is a basis of V if and only if A is invertible.

Proof. A is the matrix with respect to {vi} of the linear mapping f which
maps vj to

∑
Aijvi for each j.

(4.10) Definition.
Where V is a vector space with bases {vi} and {v′i} the matrix A defined by
v′j =

∑n
i=1Aijvi is called the matrix for the base change from {vi} to {v′i}.

Clearly A−1 is the matrix for the base change from {v′i} to {vi}.

Now if v is a vector in V with

v =
n∑
i=1

xivi =
n∑
j=1

yjv
′
j

then

v =
n∑
j=1

yjv
′
j

=
n∑
j=1

yj

n∑
i=1

Aijvi

=
n∑
i=1

(
n∑
j=1

Aijyj)vi

=
n∑
i=1

(Ay)ivi

where

y =


y1

y2

.

.
yn


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That is, the vector x of coefficients of a vector v with respect to the basis
{vi} is related to the vector y of coefficients of v with respect to the basis
{v′i} by th matrix equation

x = Ay

(4.11) Theorem.
Suppose that V andW are vector spaces over k, that {v1, . . . , vn} and {v′11, . . . , v

′
n}

are bases for V , and that {w1, . . . , wm} and {w′1, . . . , w′m} are bases for W.
Let f be a linear mapping from V to W , and suppose that f has matrix T with
respect to the bases {vi} and {wi} and matrix T ′ with respect to the bases {v′i} and
{w′i}. Suppose also that P and Q are the matrices for the base changes from {vi}
to {v′i} and from {wi} to {w′i}. Then

T ′ = Q−1TP

Proof. For each j,

f(v′l) = f(
n∑
k=1

Pklvk) =
n∑
k=1

Pklf(vk)

=
n∑
k=1

(Pkl
m∑
j=1

Tjkwj)

=
n∑
k=1

(Pkl
m∑
j=1

(Tjk
m∑
i=1

(Q−1)ijw′i

=
m∑
i=1

m∑
j=1

n∑
k=1

(Q−1)ijTjkPklw′i

=
m∑
i=1

(Q−1TP )ilw′i

ThusQ−1TP is the matrix representing f with respect to the bases {v′i} and
{w′i}. Hence (since T ′ is defined to be that matrix)

T ′ = Q−1TP

(4.12) Corollary.
Suppose that T and T ′ are two m × n matrices, and that for some invertible ma-
trices A,B, T ′ = ATB. Then T and T ′ represent the same linear mapping from
Rn to Rm with respect to different bases.
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Proof. In the above, define {vi} = {ei}, {wi} = {ei}, and let v′j =
∑
Bijvi,

w′j =
∑
A−1
ij wi.

We’ve seen now that matrices are a nice way to present linear maps. Given
two bases: one for V and one for W we have a bijection

Hom(V,W )→ MatdimW×dimV .

This bijection is even a linear map itself. As we already said this bijection
can only be made using the bases and if one takes other bases we get an-
other bijection.
This gives us freedom to choose different bases such that we can try to find
a nice way to represent a given map as a matrix. This leads to the following
questions.

(4.13) Question.
Given a linear map f is there some kind of standard form we can bring the matrix
that represents f , in

1. using base changes in both the source and the target?

2. using base changes only in the target (or only in the source)?

3. using base changes in the target if source and target coincide?

We can formulate them in matrix-only language:

(4.14) Question.
Given an n×m-matix T is there some kind of standard form we can bring it in

1. using transformations of the form T 7−→ ATB?

2. using transformations of the form T 7−→ AT (or T 7−→ TB)?

3. using transformations of the form T 7−→ A−1TA if n = m?

Here A and B are invertible matrices.

In the next 3 chapters we will study each of these 3 questions more closely.



Chapter 5

Rank

0.1 Kernel and Image

Linear maps also enable us to define subspaces.

(5.1) Definition.
Given a linear map φ : V → W we define the image of φ as the set of all
elements of W reached by the map and the kernel as all elements that are
mapped to zero.

• Imφ := {w ∈W |∃v ∈ V : w = φ(v)}

• Kerφ := {v ∈ V |φ(v) = 0}

(5.2) Lemma.
Imφ is a subspace of W and Kerφ is a subspace of V .

Proof. If w1 = φ(v1) and w2 = φ(v2) then λw1 + µw2 = φ(λv1 + µv2) so (*)
holds for Imφ.
If φ(v1) = 0 and φ(v2) = 0 then φ(λv1 + µv2) = λ0 + µ0 = 0 so (*) holds for
Kerφ.

The image and the kernel can be used to translate injectivity and surjectiv-
ity to linear algebra.

(5.3) Lemma.
A map φ : V →W is

• surjective if and only if Imφ = W ,

• injective if and only if Kerφ = {0}.
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Proof. The first statement follows directly from the definition of surjectivity.
If φ is injective there can only be one element in V that is mapped to the
zero. By the linearity, this unique element must be the zero 0. If φ is not
injective then we can find v1, v2 ∈ V with φ(v1) = φ(v2). The difference
v1 − v2 sits in the kernel.

0.2 Quotient spaces

Given a vector space V and a subspace U ⊂ V we can construct an equiva-
lence relation on V

v ∼=U w ⇐⇒ v − w ∈ U

This is indeed an equivalence relation: reflexivity follows from the fact that
0 ∈ U , symmetry from u ∈ U =⇒ −u ∈ U and transitivity from u1, u2 ∈
U =⇒ u1 + u2 ∈ U .
This equivalence relation is compatible with the structure of the the vector
space

• if v1 ∼=U v2 then λv1 ∼=U λv2,

• if v1 ∼=U v2 and w1
∼=U w2 then v1 + w1

∼=U v2 + w2

Therefore we can turn the quotient set V/U := V/∼=U into a vector space by
setting λ[[v]] = [[λv]] and [[v]] + [[w]] = [[u+ w]]. This definition also implies
that the quotient map

π : V → V/U : v 7−→ [[v]]

is a linear surjection.

(5.4) Theorem.
If U is a subspace of V and V is finite dimensional, then V/U is finite dimensional
and

DimV/U = DimV −DimU

Proof. Choose a basis u1, . . . , uk forU and extend it to a basis for V : {u1, . . . uk, v1, . . . vl}
The dimension of U is k and of V is k+ l. We now show that {[[v1]], . . . , [[vl]]}
is a basis for V/U . It is clear that 〈[[v1]], . . . , [[vl]]〉 is V/U because

[[λ1u1 + · · ·+ λkuk + µ1v1 + · · ·+ µlvl]] = [[µ1v1 + · · ·+ µlvl]] = µ1[[v1]]+· · ·+µl[[vl]].

Furthermore the {[[v1]], . . . , [[vl]]} are linearly independent because if µ1[[v1]]+
· · ·+ µl[[vl]] = 0 then µ1v1 + · · ·+ µlvl ∈ U but because {u1, . . . uk, v1, . . . vl}
is a basis of V the µi must be zero.
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(5.5) Examples.

Let V be the subset of P(S) containing all sets with an even number of
elements. The quotient P(S)/V contains two elements the set of all even
subsets and the set of all odd subsets. Hence the quotient is isomorphic to
Z1

2.

Let V be the subspace of C0(R) containing all functions for which f(0) = 0.
The equivalence classes of ∼=V are [[g]] = {f ∈ C0(R)|f(0) = g(0)} and we
can parametrize them by g(0). The quotient space is therefore isomorphic
with R by the linear map C0(R)/V → R : [[g]] 7−→ g(0).

Let V be the subspace of R3 spanned by (1, 1, 1). The equivalence classes
of ∼=V contain a unique element from U = {(0, a, b)|a, b ∈ R} so we have a
bijective map

φ : U → R3/V : (0, a, b) 7−→ [[(0, a, b)]]

(5.6) Theorem.
For any linear map φ : V →W we have that

Imφ = V/Kerφ.

Proof. We have a map

φ̄ : V/Kerφ→ Imφ : [[v]]→ φ(v).

This map is well defined and injective because [[v]] = [[w]] ⇐⇒ φ(v) =
φ(w). The map is surjective because the target is Imφ.

(5.7) Corollary.
Every linear map φ : V →W can be written as a composition

ι ◦ φ̄ ◦ π

where

• π : V → V/Kerφ : v 7−→ [[v]] is a surjection,

• φ̄ : V/Kerφ→ Imφ : [[v]] 7−→ φ(v) is a bijection,

• ι : Imφ→W : [[w]] 7−→ w is an injection,

(5.8) Definition.
For any linear map we will call Dim Imφ = dimV −Dim Kerφ the rank of
φ. If A is a matrix then its rank, is the rank of the corresponding linear map
fA : Rm → Rn.
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We will see now that the rank plays an important role in the classification
of linear maps.

1 Base Change and Rank

(5.9) Definition.
We say two m× n matrices T and T ′ are basechange equivalent if and only
if there exist invertible matrices such that T ′ = ATB We denote this by∼=B .

(5.10) Theorem.
∼=B is an equivalence relation on Matm×n(K).

Proof. T ∼=B T because T = 1T1. If T ′ = ATB then T = A−1T ′B−1 so
∼=B is symmetric. Finally, transitivity follows because if T ′ = ATB and
T ′′ = CT ′D then T ′′ = (CA)T (BD).

The question we can ask now is how do the equivalence classess look like.

(5.11) Theorem.
Let T be any m × n matrix. Then there is an invertible m ×m matrix A and an
invertible n× n matrix B such that

ATB =
(
Ir 0r,n−r
0m−r,r 0m− r, n− r

)
Proof. T represents a linear mapping f from Rn to Rm, with respect to the
bases {ei}ni=1 and {ei}mi=1. Construct a basis {v1, . . . , vn} of Rn such that
{vr+1, . . . , vn} is a basis for ker(f). Then choose a basis {w1, . . . , wm} of
Rm such that wi = f(vi) for i = 1, . . . , r. This is indeed possible because
the f(vi) for i = 1, . . . , r form a linearly independent set (

∑r
i=1 aif(vi) = 0

implies
∑r

i=1 aivi ∈ Ker f contradicting that vi, i > r is a basis for Ker f .
With respect to the bases {vi} and {wi}, f is represented by the matrix

T ′ =
(
Ir 0r,n−r
0m−r,r 0m− r, n− r

)
.

Now where A−1 is the matrix for the base change of Rm from {ei} to {wi}
and B is the matrix for the base change of Rn from {ei} to {vi}, by the
previous result we have

ATB = T ′
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(5.12) Definition.
We will call r the rank of the matrix T .

(5.13) Corollary.
If f : V →W is a map andA a matrix representing it then RankA = dim Im f =
dimV − dim Ker f .
RankA is also the dimension of the span of the columns (which is equal to dim Im f )
and because RankA = RankA>, RankA is also the dimension of span of the
rows.

(5.14) Theorem.
The equivalence classes of Matm×n,∼=B are parametrized by the rank: Matm×n/ ∼=B

has min(m,n) + 1 elements.

Matm×n/ ∼=B= {{A ∈ Matm×n|RankA = r}|0 ≤ r ≤ n,m}

Proof. We have already seen that every matrix sits in the class of some

T ′ =
(
Ir 0r,n−r
0m−r,r 0m− r, n− r

)
.

Two such matrices with different r cannot sit in the same class because base
changes do not change the rank of a matrix.
Finally r ≤ n,m because otherwise we cannot fit In inside an n×m-matrix.
Hence r = 0, 1, . . . ,min(n,m).

Although we have a nice classification of linear maps by means of its rank,
we still do not have an easy way to calculate the rank, image and kernel of
a given map or matrix. In the next chapter we will see such a method.





Chapter 6

Row echelon matrices

1 Base change on one side

In some problems it is interesting to fix a basis in the target or the source
of the map and try to find a basis in the source or the target such that the
matrix that represents the map has a nice form.
Suppose we want to describe the image of the map f : V →W in terms of a
basis of W , then we still have a choice for the basis in the source. Similarly
if we want to describe the kernel of the map in terms of a given basis in V
we still can vary the basis in W .
Just like in the previous chapter we formulate this problem in the language
of equivalence relations.

(6.1) Definition.
Two m× n-matrices T, T ′ are row or left equivalent if there is an invertible
matrix A such that T ′ = AT . We denote this by T ′ ∼=L T . Similiarly we can
define a notion of column or right equivalence.

(6.2) Theorem.
∼=L and ∼=R are equivalence relations on Matm×n(K).

Proof. Analogous to ??

(6.3) Theorem.
Let f : V → W and g : V → W be two linear maps and let A and B be their
matrix representations according to two fixed bases. If A ∼=L B then f and g have
the same kernel, if A ∼=R B then f and g have the same image.
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2 The Row Echelon Form

The problem is now to describe the equivalence classes of ∼=L.

(6.4) Definition. Matrix in row echelon form
We say that a matrix A is a row echelon matrix if the first non-zero entry in
each row is further right than the corresponding entry in the row above it.
If additionally the first non-zero entry of each row is a 1 and this 1 is the
only nonzero entry in its column then we speak of a reduced row echelon matrix.

If the coefficient matrix of a system of simultaneous linear equations is in
echelon form it is relatively easy to solve the system.
Example:

x1 + x2 + x3 + x4 + x5 = 15
x2 + 2x3 + 2x4 + 2x5 = 26

x3 + x4 + x5 = 12
x4 − x5 = −1

x5 = 5

We solve from the bottom up, i.e. for x5, then x4 etc.:-

3 Row operations

We’ll use the techniques of Gaussian elimination to transform a given ma-
trix or set of vectors in Rn into one in row echelon form; this allows us
to solve a number of related problems. Gaussian elimination is simply a
sequence of carefully chosen row operations.

(6.5) Definition.
When A is an m×n matrix we define an elementary row operation on A to
be any one of the following types of operations on the rows of A:-

1 one row of A is replaced by a non-zero multiple of itself

2 two rows of A are swapped

3 one row of A is replaced by the sum of itself and a scalar multiple of
another row

The row operations can be thought of as multiplying A on the left with
special matrices.
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1 Rescaling the ith row with factor λ is the same as transforming A into
RA where R is the identity matrix except on the i, ith entry where
Rii = λ.

2 Swapping the ith row with the jth is the same as transforming A into
RA where R is the identity matrix except for Rij = Rji = 1 and
Rii = Rjj = 0.

3 Adding λ times the jth row to the ith is the same as transforming A
into RA where R is the identity matrix except for Rij = λ.

All these matrices are invertible, so if A′ is obtained from A after applying
row operations then A′ ∼=L A.

4 Gaussian Elimination

(6.6) Definition. pivot
We define a pivot in a matrix A to be the first non-zero entry in some row.
We say that a selected pivot is leftmost from row i in A if there is no pivot
in A to the left of the selected pivot in or below row i.

(6.7) Algorithm. Standard Gaussian elimination

Input: An m× n matrix A.
For i = 1 to m− 1 do:

if there is no pivot in row i or below, halt,

otherwise :

swap rows as necessary to ensure that there’s a small leftmost pivot
in row i,

divide row i by the pivot.

zero in the pivot column that is, where the pivot in row i is in col-
umn j, subtract an appropriate multiple of row i from each row
below and above it so that there are zeros in column j below and
above row i.

Output: An m× n matrix A′ in reduced row echelon form.
NB: If one only needs the row echelon form one can omit the step divide
and change the step [zero in the pivot column] to [zero below the pivot].
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(6.8) Examples.


1 2 3 4
5 6 7 8
9 10 11 12
1 1 1 1

 −→
R2→ R1− 5R1
R3→ R3− 9R1
R4→ R4−R1


1 2 3 4
0 −4 −8 −12
0 −8 −16 −24
0 −1 −2 −3




0 1 2 3
4 5 6 7
1 0 1 0
2 3 2 2

 −→

(6.9) Theorem.
If two matrices in reduced row echelon form are row equivalent then they are the
same

Proof. Let T be a reduced row echelon matrix and A an invertible matrix
such that AT is also a reduced row echelon matrix. We show that AT = T .
We do this by induction on the nonzero rows of T . If al rows of T are zero
then T = 0 so AT = T = 0.
Suppose that the propostion holds for all matrices with at most k nonzero
rows and let T be a matrix with k + 1 nonzero rows.
Let p be the position of the first nonzero column of T and hence also of AT .
If Ai1 6= 0 for some i > 0 then AT cannot be in RREF because (AT )ip =
Aip 6= 0. Therefore Ai1 = 0 for i > 0 and the rows of AT with index bigger
than 1 are linear combinations of the rows of A with index bigger than 1.
Let T̂ and (̂AT ) are the denote the matrices obtained by deleting the first
row of T andAT , while Â stands for the matrix constructed by deleting the
first row and column of A. By the previous discussion we have that

(̂AT ) = ÂT̂

If one removes the upper row of a row reduced echelon matrix, it is still a
row reduced echelon matrix. so by the induction hypothesis (̂AT ) = ÂT̂ .
We only need to show that the first row of AT is equal to the first row of
T . If this were not the case A1j > j for some j > 1. One can calculate that
(AT )1pj = A1pj where pj is the index of the pivot of the jth row, but T1pj is
zero because T is a row reduced echelon matrix.

This theorem shows that every equivalence class contains a unique reduced
row echelon matrix. De elements in the quotient Matm×n/ ∼=L can be
parametrized by the reduced row echelon matrices.
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5 Solving Problems using the row echelon form

Gaussian elimination can be used to solve many problems in linear algebra

(6.10) Problem.
Determining the rank of a given matrix.

(6.11) Solution.
Bring the matrix in reduced row echelon form. The rank is the number of
nonzero rows.

(6.12) Problem.
Determining the dimension of the span of a set of vectors.

(6.13) Solution.
Consider the matrix with rows the given vectors. Bring the matrix in re-
duced row echelon form. The dimension of the span is the number of
nonzero rows.

(6.14) Problem.
Determining whether a given vector v is in the span of a given set of vectors.

(6.15) Solution.
Consider the matrix with rows the given set of vectors. Bring the matrix in
reduced row echelon form. For every nonzero row inA substract a multiple
of from v to make the coefficient of the corresponding pivot 0. If after these
operation v becomes zero then v is in the span else v is not.

(6.16) Problem.
Determining a set of vectors that span the kernel of a given matrix A.

(6.17) Solution.
Bring the matrix in reduced row echelon form. Let S ⊂ {1, . . . , n} be the set
of column numbers for which there is no pivot. For every i ∈ S we define
the vector w that has a 1 on position i and for every j ∈ {1, . . . , n} \ S we
put −Alj where l is the row number of the pivot.
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(6.18) Problem.
Finding a matrix such that the span of a set of vectors is its kernel.

(6.19) Solution.
Consider the matrix with rows the given vectors and transpose it. Bring
the matrix in reduced row echelon form. Determine the kernel of this map.
The matrix with as row vectors a basis for the kernel, is the matrix we are
looking for.

(6.20) Problem.
Finding the inverse of an n× n-matrix A.

(6.21) Solution.
Construct the 2n × n-matrix [A In] and bring it in reduced row echelon
form. If the matrix is invertible, then the reduced row echelon form looks
like [InA−1]. If the reduced row echelon form does not start with In the
matrix is not invertible.



Chapter 7

Conjugation and Eigenvectors

So far we classified maps under base change in their source and target to-
gether or separately. However we did not consider yet maps for which
their source and target coincide.
In this case we get a new type of equivalence relation.

(7.1) Definition.
Two n× n-matrices T and T ′ are conjugated if there is an invertible matrix
A such that T ′ = ATA−1. We denote this by T ∼=C T

′

(7.2) Theorem.
∼=C is an equivalence relation.

Again the task is to classify the equivalence classes of matrices under con-
jugation. In general this problem is more complicated then the previous
two. Unlike the former the answer depends on the structure of the field
over which we are working.
The solution will be the simplest when the field is algebraicly closed for
instance if we are working over C.

1 Eigenvectors

(7.3) Definition.
Suppose that V is a vector space over a field K, and that f : V → V is a
linear mapping. Then a non-zero vector v ∈ V is called an eigenvector of f
if

f(v) ∈ 〈v〉



58 Conjugation and Eigenvectors

In that case, there is some λ in k with

f(v) = λv

λ is called the eigenvalue of f associated with v.
Where A is a matrix which represents f with respect to some basis of V , we
also say that v is an eigenvector of A, and λ is an eigenvalue of A.

(7.4) Examples. 1. Where V = R[x], the set of polynomials over R, and
D : V → V is the linear mapping defined by

D(p(x)) = p′(x)

, then every constant polynomial is an eigenvector, with eigenvalue
0. For if p(x) = c, D(p(x)) = 0 = 0p(x).

If we are looking at D defined on C1(R) we see that f(x) = eax is an
eigenvector with eigenvalue a: Df(x) = af(x).

2. Where V = R3 and f is the linear mapping represented with respect
to the standard basis e1, e2, e3 by the matrix

A =

 3 2 0
0 4 0
0 6 3


then e1, e3, and in fact any vector of the form ae1+be3 are eigenvectors
with eigenvalue 3.

3. Where V = R3 and f is the linear mapping represented with respect
to the standard basis e1, e2, e3 by the matrix

A =

 0 1 1
1 0 2
0 0 3


then e1 + e2 is an eigenvector with eigenvalue 1.

How do we find the eigenvectors and eigenvalues of a linear mapping f?

(7.5) Proposition.
Suppose that V is a vector space over k and that f : V → V is a linear mapping,
represented with respect to a basis {v1, . . . , vn} of V by an n× n matrix A. Then
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v =
∑
xivi is an eigenvector of V with eigenvalue λ if and only if the column

vector

x =


x1

x2

.

.
xn


is a non-zero solution to the matrix equation

(A− λIn)x = 0

Hence we find the eigenvalues of f by finding all possible λ such that the
matrix A − λIn is singular, that is, we find all λ such that A − λIn has de-
terminant 0. The equation det(A − λIn) = 0 has degree n and so at most n
solutions, so there can be at most n distinct eigenvalues.
Where K = C, every polynomial over C has n roots, and hence A has n
distinct eigenvalues iff no eigenvalue is repeated.
Then for a given eigenvalue λ we find the coefficients of a corresponding
eigenvector v (in terms of the chosen basis) by solving the matrix equation

(A− λIn)x = 0

Each eigenvalue has many eigenvectors. For instance, any multiple of an
eigenvector is an eigenvector. The eigenvectors of an eigenvalue actually
form a subspace of the whole space, called an eigenspace, which may have
dimension more than 1.
If A is diagonal, then the eigenvalues of A are very easy to find they are
simply the diagonal entries of A, and the standard basis vectors of Rn are
all eigenvectors.
If all the entries of A on one side of the diagonal are 0 then the eigenvalues
of A are again the diagonal entries, but the standard basis vectors are not
usually eigenvectors. (If all the entries on the lower side of the diaginal are
zero, we say that A is upper-triangular. If all the entries on the upper side
of the diagonal are zero, we say that A is lower-triangular.)

(7.6) Definition.
Where A is an n × n matrix and where B−1AB is diagonal for some n × n
matrix B, we say that A is diagonalisable.

(7.7) Proposition.
An n × n matrix A is diagonalisable if and only if A has n linearly independent
eigenvectors v1, v2, . . . vn.
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Proof. Let f be the mapping from Rn to Rn represented with respect to the
standard basis by A. If A is diagonalisable, then for some B, B−1AB is
diagonal. B−1AB represents f with respect to the basis whose elements
are the columns of B. Since B−1AB is diagonal, each of those vectors is
mapped to a multiple itself, and hence is an eigenvector. SoA has n linearly
independent eigenvectors.
Conversely, ifA has n linearly independent eigenvectors, v1, . . . , vn letB be
the matrix for the base change from the standard basis to {v1, . . . , vn. Then
B−1AB is diagonal, with the eigenvalues of A as its diagonal entries.

Some n × n matrices are diagonalisable. Some are not. the following is an
important result.

(7.8) Theorem.
Suppose that V is a vector space over K and that f : V → V is a linear mapping.
If λ1, λ2, . . . , λn are distinct eigenvalues of f , then where v1, v2, . . . , vn are the
associated eigenvectors, {v1, . . . , vn} are linearly independent vectors.

NB. This result does not require n = dimV , or even that λ1, . . . , λn are all
the eigenvalues of f .

Proof. The proof is by induction on n.
When n = 1 there is just one eigenvector, {v1}, which is non-zero by defi-
nition, and so {v1} is a linearly independent set.
So suppose that the result is true for a set of less than n distinct eigenvalues.
Then the vectors v1, . . . , vn−1, the eigenvectors for λ1, . . . , λn−1, are linearly
independent.
So now suppose that the vectors v1, . . . , vn are linearly dependent. Then for
some µ1, . . . , µn,

µ1v1 + µ2v2 + . . . µnvn = 0

where not all µi are zero. In particular µn 6= 0.
Applying f to the above, we see that

0 = f(0) = f(µ1v1 + µ2v2 + . . . µnvn)
= µ1f(v1) + µ2f(v2) + . . . µnf(vn)
= λ1µ1v1 + λ2µ2v2 + . . .+ λnµnvn

Hence 0 = λk(µ1v1 + µ2v2 + . . . µnvn)− (λ1µ1v1 + λ2µ2v2 + . . .+ λnµnvn)
= (λn − λ1)µ1v1 + (λn − λ2)µ2v2 + . . . (λn − λn)µnvn

0 = (λn − λ1)µ1v1 + (λn − λ2)µ2v2 + . . . (λn − λn−1)µn−1vn−1
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Now, by the induction hypothesis, the vectors v1, v2, . . . , vn−1 are linearly
independent. So

(λn − λ1)µ1 = (λn − λ2)µ2 = . . . = (λn − λn−1)µn−1 = 0

are all zero. Since the eigenvalues λ1, λ2, . . . , λn are all distinct, this must
imply that

µ1 = µ2 = . . . = µn−1 = 0

Hence
µnvn = µ1v1 + µ2v2 + . . . µnvn = 0

So, since vn 6= 0, µn = 0. So v1, . . . , vn are linearly independent.

(7.9) Corollary.
Suppose that V is an n-dimensional vector space over K and that f : V → V is a
linear mapping. If f has n distinct eigenvalues λ1, λ2, . . . , λn, then V has a basis
of eigenvectors.

Proof. Let v1, v2, . . . , vn be eigenvectors associated with λ1, λ2, . . . , λn. Then
v1, . . . vn are linearly independent and span a subspace of V of dimension
n. Since V has dimension n, this is the whole of V . So {v1, v2, . . . , vn} is a
basis for V .

(7.10) Corollary.
Suppose that A is an n × n matrix over a field K, with n distinct eigenvalues
λ1, λ2, . . . , λn ∈ k. Then A is diagonalisable

Proof. This is a direct consequence of the theorem and the proposition di-
rectly preceding it.

(7.11) Exercise.
Find a 2× 2 matrix B such that the matrix B−1AB, where

A =
(

1 3
3 −1

)
,

is diagonal.

(7.12) Solution.
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det(A− λI2) =
∣∣∣∣ 1− λ 3

3 −1− λ

∣∣∣∣ = (1− λ)(−1− λ)− 9

= −1 + λ2 − 9 = λ2 − 10, λ = ±
√

10

(A−
√

10I2)
(
x
y

)
=

(
0
0

)
↔ (1−

√
10)x+ 3y = 0, 3x− (1 +

√
10)y = 0,

↔
(
x
y

)
= k

(
3√

10− 1

)
(A+

√
10I2)

(
x
y

)
=

(
0
0

)
↔ (1 +

√
10)x+ 3y = 0, 3x+ (

√
10− 1)y = 0,

↔
(
x
y

)
= k′

( √
10− 1
−3

)
B =

(
3

√
10− 1√

10− 1 −3

)

A matrix with less than n distinct eigenvalues might or might not be diag-
onalisable.

(7.13) Examples.
The following matrices have repeated eigenvalues and are diagonalisable:-

(
2 0
0 2

)
,

 1 1 1
1 1 1
1 1 1


The first is diagonal, so is certainly diagonalisable. We see that they are
diagonalisable by producing matrices which diagonalise.
A second example is the matrix (

0 1
−1 0

)
This matrix has characteristic polynomial X2 + 1. This means that it has
no eigenvectors over R so over R it is not diagonalizable. However over C
it is diagonalisable: its eigenvectors are (1, i) with eigenvalue i and (1,−i)
eigenvalue −i.
Even over C not all matrices are not diagonalisable. The following matrices
have all eigenvalues (over R) and are not diagonalisable over R and over
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C: (
1 1
0 1

)
,

 1 2 0
0 1 2
0 0 1


For if they were diagonalisable, in each case the eigenvectors with eigen-
value 1 would span the space. So the matrix would be a matrix of the
identity mapping, and hence would be the identity matrix.
In fact the same kind of argument shows that any upper triangular or lower
triangular matrix with all diagonal entries the same is diagonalisable if and
only if it is already diagonal.

2 The Jordan normal form

Now we are going to investigate in what form we can bring a matrix if it is
not diagonalisable over C (any other algebraicly closed field).

(7.14) Definition.
Let V be a vector space and f : V → V a linear map. We call a sequence of
nonzero vectors v1, . . . , vk a Jordan sequence with eigenvalue λ if

∀i ∈ [1, k − 1]vi+1 = f(vi)− λvi and f(vk)− λvk = 0

Note that Jordan sequences always exist because every eigenvector forms
a Jordan sequence of length 1.

(7.15) Lemma.
If v1, . . . , vk is a Jordan sequence with eigenvalue λ then v1, . . . , vk are linearly
independent and f will map 〈v1, . . . , vk〉 to itself. We can express f |〈v1,...,vk〉 as
the matrix

J (λ, k) =


λ 1

. . . . . .
λ 1

λ


This matrix is called a Jordan block

Proof. Suppose
∑
aivi = 0 and j is the first coefficient such that aj 6= 0.

Then (f − λI)k−j(
∑
aivi) = ajvk = 0 =⇒ vk − 0. The rest of the lemma

follows from the definition of a Jordan sequence.
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(7.16) Theorem.
Every linear map f : V → V with V a finite dimensional vector space over C has
a basis consisting of Jordan sequences (a.k.a a Jordan basis).

Proof. Suppose that the statement is false, then there exists a V, f that has
no basis consisting of Jordan sequences. We take the V, f with the smallest
possible dimension. This dimension is a least 2 (because every basis for a
one-dimensional space consists of an eigenvector).
Because we are working over the complex numbers f has at least one eigen-
vector. Without loss of generality, we can assume that f has an eigenvec-
tor with eigenvalue 0, because a Jordan basis for V, f is also a Jordan ba-
sis for V, f − λ Therefore Ker f 6= 0 and hence Im f < dimV . Clearly
f(Im f) ⊂ Im f so we can consider the map

f |Im f : Im f → Im f : u 7−→ f(u)

The pair Im f, f |Im f has a strictly smaller dimension so it has a Jordan basis.
Now look at the set of subspaces U ⊂ V with f(U) ⊂ U that that have a
Jordan basis which contains a basis of Im f .
This set is not empty as Im f itself is in it. We take an element of this set
with maximal dimension and call it W . Its Jordan basis will be denoted by
B.
We will prove that W must be equal to V .
First we show that f(W ) = Im f = f(V ). Clearly as W ⊂ V , f(W ) ⊂ f(V )
so we have to prove that f(V ) ⊂ f(W ). It suffices to show that B ∩ f(V ) ⊂
f(W ) because B contains a basis for f(V ).
Let w ∈ B ∩ f(V ) then it is contained in a Jordan sequence v1, . . . , vk ∈ W
with eigenvalue λ.

λ = 0 If w is not the first element of the sequence, it is equal to f(vi) ∈ f(W )
for some vi. If w = v1 then we can find a v0 such that f(v0) = w
because w ∈ f(V ). If w′ 6∈ W then B ∪ v0 is a Jordan basis for 〈W, v0〉
(v0, v1, . . . , vk is a Jordan sequence) which contradicts the fact that W
was maximal.

λ 6= 0 If v ∈ W then v ∈ f(W ) ⇐⇒ −λv + f(v) = (f(v) − λ id)v ∈ f(W ).
So for a Jordan sequence we get vi ∈ W ⇐⇒ vi+1 ∈ W and as
(f(v) − λ id)vk = 0 ∈ f(W ) we get that the every Jordan sequence
with λ 6= 0 sits in f(W ).

Because f(W ) = f(V ), we can find for any v ∈ V a w ∈ W with f(v) =
f(w). As f(v−w) = 0 the vector v−w forms a Jordan sequence of length 1.
If v−w 6∈W thenB∪{v−w} forms a Jordan basis for 〈W, v−w〉 containing
a basis for f(V ). This contradicts the fact that W is maximal. So v−w ∈W
and hence v ∈W , so V = W .
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(7.17) Theorem.
Every matrix A can be conjugated to a direct sum of Jordan blocks.

A ∼=C J (λ1, k1)⊕ · · · ⊕ J (λp, kp)

Two direct sums of Jordan blocks are conjugate if they have the same number of
blocks of each type. I.e.

J (λ1, k1)⊕ · · · ⊕ J (λp, kp) ∼=C J (µ1, l1)⊕ · · · ⊕ J (µq, lq)

if and only if p = q and ∃π ∈ Perm({1, . . . , n}) : λi = µπ(i)&ki = lπ(i).

Proof. The first statement is a reformulation of the previous theorem.
The second requires a bit more thought. Clearly the condition is sufficient
because A⊕B ∼=C B ⊕A.
It is also necessary because we can express the ki and λi in terms of the
linear map representing the matrix.
Indeed Dim Ker(A − λIn) equals the number of jordan blocks with eigen-
value λ, while Dim Ker(A− λIn)2 − Dim Ker(A− λIn) equals the number
of jordan blocks with eigenvalue λ and size k ≥ 2. In general Dim Ker(A−
λIn)i−Dim Ker(A−λIn)i−1 equals the number of jordan blocks with eigen-
value λ and size k ≥ i.
As Dim Ker(BAB−1 − λIn)i = Dim KerB(A − λIn)iB−1 = Dim Ker(A −
λIn)i The number of Jordan blocks of each type in the two direct sums must
be the same.

(7.18) Definition.
A square matrix is called indecomposable if it cannot be conjugated to a
direct sum of smaller matrices.

(7.19) Theorem.
Any indecomposable matrix can be conjugated to a Jordan block.

3 The characteristic polynomial

IfA ∈ Matn×n(K) is a square matrix and p(X) = p0+p1X+. . . pkXk ∈ K[X]
is a polynomial, we can calculate the matrix

p(A) := p0In + p1A+ · · ·+ pkA
k.

(7.20) Lemma.
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• p(GAG−1) = Gp(A)G−1.

• p(A⊕B) = p(A)⊕ p(B)

Proof. First note that (GAG−1)i = (GAG−1)(GAG−1) . . . (GAG−1) = GAA . . . AG−1 =
GAiG−1 and In = GG−1. As a consequence

p(GAG−1) = p0GG
−1 + p1GAG

−1 + · · ·+ pkGA
kG−1 = Gp(A)G−1.

The second fact follows from the following easy identities: ∀A1, A2 ∈ Matn×n :
∀B1, B2 ∈ Matm×m :

(A1 ⊕B1) + (A2 ⊕B2) = (A1 +A2)⊕ (B1 +B2)
(A1 ⊕B1)(A2 ⊕B2) = (A1A2)⊕ (B1B2)

In ⊕ Im = In+m.

(7.21) Definition.
We call the polynomial χA(X) := det(A − XIn) the characteristic polyno-
mial of A. The eigenvalues of A are the roots of χA(X).

(7.22) Lemma. • Conjugate matrices have the same characteristic polynomial.

χGAG−1(X) = χA(X)

• The characteristic polynomial of the direct sum of two matrices is the product
of their characteristic polynomials.

χA⊕B(X) = χA(X)χB(X)

Proof. det(GAG−1−XIn) = det(GAG−1−XGG−1) = det(G(A−XIn)G−1) =
det(G) det(A−XIn) det(G−1) = det(A−XIn).
The second identity follows from the fact that det(A⊕B) = det(A)×det(B).

We are now ready to prove a very important theorem:

(7.23) Theorem. Cayley-Hamilton Identity
If you fill in A in its characteristic polynomial you get the zero matrix.

χA(A) = 0
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Proof. Because of the lemmas above we only need to show this for Jordan
blocks. One can easily check that χJ (λ,k)(X) = (X−λ)k. Now J (λ, k)−λIk
a maps ek 7−→ ek−1 7−→ . . . 7−→ e1 7−→ 0 so (J (λ, k) − λIk)k is the zero
map.




