
Chapter 1

Error correcting codes

1 Motivation

(1.1) Almost all systems of communication are confronted with the prob-
lem of noise. This problem has many different causes both human or nat-
ural and imply that parts of the messages you want to send, are falsely
transmitted. The solution to this problem is to transmit the message in an
encoded form such that it contains a certain amount of redundancy which
enables us to correct the message if some errors have occurred.

(1.2) Mathematically one can see a coded message as a sequence of symbols
chosen out of a finite set F . If an error occurs during the transmission,
some of the symbols will be changed, and the sequence received will differ
at some positions from the original. If one would allow to transmit all
possible sequences, one could never correct any errors because one could
always assume that the received message is the one sent and that no errors
have occurred.

(1.3) To avoid this problem we restrict ourself to transmit only special se-
quences which we call code words. If few errors occur during the transmis-
sion one will see that the received message is not a codeword. In this way
the receiver knows that errors have occurred. To correct the message one
searches for the code word which is the closest to the received message, i.e.
which differs at the least number of positions with the received message.

(1.4) Example.
Suppose you have to navigate at distance a blind person through a maze.
One could use a morse like coding system:

2 Error correcting codes

Action Code
One step forward ..
One step backward −−
Turn left .−
Turn right −.

This code is useful as long as no errors occur, because even if only a single
error occurs the blind person would not notice this, understand a different
command and probably walk against a wall.
To improve the system one could use this code

Action Code
One step forward ...
One step backward −− .
Turn left .−−
Turn right −.−

All the codewords here contain an even number of bars, if one error occurs
during the transmission, there will be one bar more or less and the received
message will no longer be a code word. The blind person will notice this
and could ask for retransmission. However he will not be able to correct
the message himself because if he receives −.., the original message could
be ... or −.−. We call such a code a single error detecting code.
To do better we use the concatenation of the previous two codes.

Action Code
One step forward
One step backward −−−− .
Turn left .− .−−
Turn right −.− .−

If here one error occurs, the blind person can deduce what the original mes-
sage was because if the error occurred in the first two symbols he will see
that the last three digits form a code word of the second code and decode
the last three symbols. If the error occurs in the last tree digits these will
no more be a code word of the second code, so he knows that the first two
digits are correct and take these to decode. This code is a single error cor-
recting code.
We ’ve seen that we can construct codes that are able to correct mistakes,
but the price for it is redundancy. As we saw above we had to use five
symbols to transmit the message, in stead of two, to produce a single error
correcting code.

We will now formalize all this to get an exact definition of the concept code:

1 Motivation 3

(1.5) Definition.
Suppose F is a finite set of symbols. A n-code C over F is a subset of Fn.
If F = F2 = {0, 1} we call the code binary. If |F| = q we speak of a q-ary
code.

So for the last example the used code

C := {00000, 11110, 01011, 10101}

is a binary 5-code.

(1.6) Definition.
An error occured at the ith place changes the ith entry of a codeword. e.g.

11110 7−→ 10110

is an error occurred at the second place.

(1.7) Definition.
The Hamming distance d(x, y) between two sequences of symbols x, y is the
number of places where they differ e.g.

d(11110, 01011) = 3

This function is really a distance function meaning that it satisfies the fol-
lowing easily to prove properties

• ∀x, y ∈ C : d(x, y) = d(y, x)

• ∀x, y ∈ C : d(x, y) = 0 ⇐⇒ x = y

• ∀x, y, z ∈ C : d(x, y) ≤ d(x, z) + d(z, y)

When i errors occur the Hamming distance between the original code word
and the received message will be i. The normal procedure to correct the
received message is to assume that the least possible errors occurred so
the reconstructed codeword will be the one with the smallest Hamming
distance from the received message.

(1.8) Example.
If we are still using code C and you receive as message 11010 you will

4 Error correcting codes

decode it as 11110 because

d(11010, 00000) = 3
d(11010, 11110) = 1
d(11010, 01011) = 3
d(11010, 10101) = 4

and it is most likely that only 1 error had occurred. If the chance of trans-
mitting a correct bit is 90% then the probability that only one error occurred
is (

5
1

)
(.9)4(.1)1 = .32805

probability that 3 errors occurred:(
5
3

)
(.9)2(.1)3 = .0081

is 400 times less so it will be most obvious to decode it the way we did.

2 Definitions

(1.9) Definition.
The distance of a code is the minimum of the distances between all code-
words.

d(C) = {d(x, y)|x, y ∈ C}

The parameters of a code are formed by n the number of symbols used for
a code word, |C| the size of the code an d its minimal distance. In this case
we speak of an (n, |C|, d)-code

One can easily compute that in the example we are using d(C) = 3 and
hence C is a (5, 4, 3)-code.

(1.10) Lemma.
A code C detects (up to) s errors if and only if d(C) > s.

Proof. Suppose that d(C) > s. Let c be a codeword in C, and let x be a
word obtained from c by making up to s errors. Now d(x, c) ≤ s, and so if
s < d(C) then x cannot be a codeword. So C detects up to s errors.
Conversely if s ≥ d(C) then there exist codewords c1 and c2 in C with
(c1, c2) = d(C) ≤ s. So c1 can be converted into c2 with no more than s
errors, and this will not be detected.

2 Definitions 5

(1.11) Lemma.
A code C corrects (up to) t errors if and only if d(C) ≥ 2t+ 1.

Proof. Suppose that d(C) > 2t. Let c be a codeword in C, and suppose
that a word x has been obtained from c with at most t errors. We need to
show that the received word x is closer to our codeword c than to any other
codeword r. Now by the Triangle Inequality, we have

d(c, x) ≤ d(c, r) + d(r, x)
−d(c, r) + d(c, x) ≤ +d(r, x)

2t+ 1− t ≤ d(x, r)
t+ 1 ≤ d(x, r)

The converse is left as an exercise.

(1.12) That the concept of error correcting codes is indeed very useful to
transmit messages over a noisy channel can be shown by a little computa-
tion. Suppose again that the error rate is 10% and that we have to transmit
messages, each chosen out of 4 possibilities. If we use the simplest code

C = {00, 11, 01, 10}

the probability that one receives the correct message is here.

.92 = 81%

If we use the code

C := {00000, 11110, 01011, 10101}

the probability of finding the correct message will be

.95 +
(

5
1

)
.94.1 = 91%.

So the error rate is reduced by 50%.

(1.13) Aside.
Richard W. Hamming Richard W. Hamming received the 1968 Turing Award
for his work on error-correcting codes at AT& T Bell Laboratories, where
he worked for 30 years on a multitude of research projects. He joined the
Naval Postgraduate School in Monterey, California, in 1976 as Adjunct Pro-
fessor, where he is currently involved in teaching and writing books on
probability and combinatorics. Hamming is a scientific generalist whose
aims have included to teach his students an attitude of excellence toward
science, not just technical skills.

Richard W. Hamming

6 Error correcting codes

3 Examples

(1.14) Example. Repetition codes
Look at the binary code

{000, 111}

This is called a [3, 1]-repetition code. In this notation, the first number n is
the length of each codeword, and the second number k is the length of the
unit being repeated. (So k must divide n for the notation to make sense!)
The number of times each unit is repeated is r = n/k.
Another example is the [4, 2]-repetition code. The original message units
have length 2; they are 00, 01, 10 and 11. The 4-digit codewords are formed
by simply repeating them, so we get 0000, 0101, 1010 and 1111 respectively.

Suppose we have a codeword for a [n, k]-repetition code. It will look like

d1d2 · · · dk d1d2 · · · dk · · · d1d2 · · · dk︸ ︷︷ ︸
r

,

where the di are digits in F .
The number of codewords is qk where q is the size of the alphabet, and the
length of a codeword is n. The minimal distance of the code is n/k because
if two codewords differ at place i then they also differ at the n/k places
i+ zk with −i/k ≤ z ≤ (n− i)/k.

(1.15) Example. Belgium bank accounts
A Belgian Bank Account number consists of 12 digits. Grouped in a group
of 3 one of 7 and one of 2. E.g.

103− 0202707− 45

Only those numbers are allowed such that rest of the number formed by
the first 10 after division by 97 equals the last two digits:

1030202707 = 10620646 · 97 + 45.

Show that this code is one error detecting but not one error correcting.
What are the parameters of this code?

(1.16) Example. EAN-13
EAN-13 is used world-wide for marking retail goods. The symbol encodes
13 characters: the first two or three are a country code which identify the
country in which the manufacturer is registered (not necessarily where the

3 Examples 7

product is actually made). The country code is followed by 9 or 10 data dig-
its (depending on the length of the country code) and a single digit check-
sum.
The checksum is a modulo 10 calculation:

1. Add the values of the digits in the even-numbered positions.

2. Multiply this result by 3.

3. Add the values of the digits in the odd-numbered positions.

4. Sum the results of steps 2 and 3.

5. The check character is the smallest number which, when added to the
result in step 4, produces a multiple of 10.

Example: Assume the barcode data = 001234567890

1. 0 + 2 + 4 + 6 + 8 + 0 = 20

2. 20 · 3 = 60

3. 0 + 1 + 3 + 5 + 7 + 9 = 25

4. 60 + 25 = 85

5. 85 + X = 90, therefore X = 5 and the codeword is 0012345678905.

Show that this code is one error detecting but not one error correcting.
What are the parameters of this code?

(1.17) Example. Code 39
This code has an alphabet of two letter {W, n} standing for wide and narrow.
The code has 45 codewords that correspod to the digits 0-9, the letters A-Z
(upper case only), and the following symbols: space, minus (-), plus (+),
period (.), dollar sign ($), slash (/), percent (%) and a special start/stop
character.
Each codeword consists of 9 elements and includes exactly 3 wides. E.g.
The code representing the letter A is: WnnnnWnnW. Usually the codeword is
printed by alternating black and white bars (which according to the code
can be wide and narrow).

8 Error correcting codes

What are the parameters of this code?

(1.18) Example. A parity code
We can represent the alphabet using binary strings of length 5 as follows. If
we wish, we can use the 6 remaining 5-digit strings for punctuation marks
or other characters.

3 Examples 9

Character Code Character Code
A 00000 N 01101
B 00001 O 01110
C 00010 P 01111
D 00011 Q 10000
E 00100 R 10001
F 00101 S 10010
G 00110 T 10011
H 00111 U 10100
I 01000 V 10101
J 01001 W 10110
K 01010 X 10111
L 01011 Y 11000
M 01100 Z 11001

Suppose that we encode our 5-digit strings by adding a 6th digit, which we
choose such that the total number of 1s in the string is even. So J = 01001
becomes 010010, and V = 10101 becomes 101011.
We now have a code, where the codewords are the 6-digit strings with even
parity. That is, the sum of their digits is an even number.

Suppose a single error occurs in the transmission of a codeword. Then
either a 1 is changed to 0, or a 0 is changed to 1. In either case sum of the
digits is changed by 1. So the parity changes.
This means that any single error will be detected. In fact, any odd number
of errors will be detected, but any even number of errors will be missed
(since if the parity changes an even number of times, it is the same as it was
originally.)
On the other hand, this code has no capability for error-correction. If a digit
is transmitted incorrectly, we have no way of knowing which digit it was,
since changing any of the digits will restore the original parity.

(1.19) Example. Hamming’s square code
This code extends the idea of parity checking to allow single errors to be
corrected. We start with message units which are binary strings of length
4. To encode a message unit, we write the digits in a square array, and
compute the sums of rows and columns mod 2.

1101 7−→ 1 1
0 1

7−→
1 1 0
0 1 1
1 0 1

The codeword is formed by combining the three rows of this array. So for
the example above our codeword is 110011101. To decode we write the

10 Error correcting codes

received message as a 3 × 3 array and look at the upper left 2 × 2 block; if
no errors have occurred, this will contain the original 4-bit message unit.

How can this code correct an error? Suppose you receive the message
100011101. Put it into a square array as follows.

1 0 0
0 1 1
1 0 1

The parity check in the first row is incorrect, so we know that there is an
error in this row. The check in the second column is also incorrect and
so there is an error in this column. So assuming that only one error has
occurred, we know that it must be the digit in the first row and second
column which is wrong.

How many errors will this code detect? Suppose that errors have turned a
codeword into a different codeword. If a particular digit has been affected,
then since the row and column sums tally, there must be another error in
the same row, and one in the same column. But these give, respectively,
another column and another row in which the checks would be wrong, un-
less there was a fourth error at the “opposite corner” of the square formed
by the three errors we know about. So there must be at least four errors in
the code. It follows that three or fewer errors will be detected by the code.

3.1 Equivalence of codes

Consider the following three codes, all subsets of F2
6.

C1 = {001100, 011011, 110011}
C2 = {000110, 101101, 111001}
C3 = {100001, 110110, 011110}

C2 and C3 are obtained from C1 by permuting the order of the digits; in
C2 they have been cyclically shifted one position to the right, and in C3

the first and third symbols and the fourth and sixth symbols have been
switched. We say that C2 and C3 were obtained from C1 by means of a
positional permutation.
It is clear that the Hamming distance between codewords will be the same,
whether we work inC1,C2 orC3. In general, we have the following lemma.

(1.20) Lemma.
Performing a positional permutation on the words of a code preserves the distance
between codewords, and so preserves the minimum distance of the code.

3 Examples 11

Now consider the following codes in F2
6.

C1 = {011011, 010101, 000111}
C2 = {010011, 011101, 001111}
C3 = {011100, 010010, 000000}

This time the changes have been made by permuting the symbols of the
alphabet at particular positions in the words. C2 is obtained from C1 by
changing the digit in the third position of each codeword. C3 is obtained
by changing the last three digits. We say that C2 and C3 were obtained by
C1 by means of symbolic permutations.
Here is another example of symbolic permutation. Here the codes are all
subsets of F3

6.

C1 = {012112, 011022, 120021}
C2 = {112111, 111021, 220020}
C3 = {102002, 100122, 021120}

C2 is obtained from C1 by applying the permutation 0 7−→ 1 7−→ 2 7−→ 0
in the first position, and the inverse of that permutation in the last posi-
tion. C3 is obtained from C1 by performing the same symbolic permuta-
tion on every position: the permutation which switches 0 and 1, leaving 2
unchanged.
These symbolic permutations are certainly distance preserving, so we have
the following lemma.

(1.21) Lemma.
Performing a symbolic permutation, at some or all of the positions of a code, pre-
serves the distance between codewords and hence the minimum distance of the
code.

(1.22) Definition.
Two codes are equivalent if one can be obtained from the other by means of
a sequence of positional and symbolic permutations.

Clearly all equivalent codes have the same minimum distance. But the
converse is false; it is not true that all codes of word length n, size M and
with the same minimum distance d are equivalent.

12 Error correcting codes

(1.23) Example.

C1 = {0000, 0011, 0101, 0110}
C2 = {0111, 1011, 1101, 1110}

It is easily checked that these two binary codes are both (4, 4, 2) codes. In
fact, they both have the property that the Hamming distance between any
pair of codewords is 2. But these two codes are not equivalent. (Exercise:
why not?)

(1.24) Example.
Consider the Hamming distance between pairs of codewords for each of
the following codes, X and Y .

X = {x1, x2, x3, x4}
= {0000000, 0011001, 0101011, 0110111}

Y = {y1, y2, y3, y4}
= {1011001, 1110111, 1101011, 0111000}

X x1 x2 x3 x4

x1 3 4 5
x2 3 4
x3 3

Y y1 y2 y3 y4

y1 4 3 3
y2 3 5
y3 4

Note that these tables contain the same numbers but in a different order. If
we rearrange the order of words in Y then we obtain an identical table to
that for X .

Y y4 y1 y3 y2

y4 3 4 5
y1 3 4
y3 3

We say that X and Y above are distance isomorphic. Here is a formal defini-
tion.

(1.25) Definition.
Two p-ary codes C1 and C2 of the same length and size are said to be dis-
tance isomorphic if their words can be ordered in such a way that, for all
xi, xj ∈ C1 and all yi, yj ∈ C2, we have d(xi, xj) = d(yi, yj).

Equivalent codes are necessarily distance isomorphic, but not vice versa.

Chapter 2

Linear codes

In order to use more advanced algebraical methods, we will now define the
notion of a linear code.

1 Definition and examples

(2.1) Definition.
A linear [n,m, d]-code C over the finite field Fq is an m-dimensional sub-
space of Fnq , which has a minimal distance d. By subspace we mean that

∀x, y ∈ C : ∀a, b ∈ Fq : ax + by ∈ C

The fact of being m-dimensional makes that C contains qm code words.

NB. For linear codes we use square brackets to describe the parameters.
The only difference between the square brackets and the round is that the
middle parameter of the former is the dimension of the code as a vector
space while the middle parameter of the latter is the number of codewords.
This implies that a linear [n,m, d] code over Fq is also an ordinary (n, qm, d)
code over Fq.

(2.2) Example. • C := {000, 110, 011, 101} is a binary linear [3, 2, 1]-code.

• C := {00000, 11110, 01011, 10101} is a binary linear [5, 2, 3]-code.

• C := {0000, 1110, 0101, 1001} is not linear because 1110 + 0101 =
1011 6∈ C.

• C := {0000, 1021, 2012, 0111, 0222, 1102, 2201, 1210, 2120} is a
linear [4, 2, 3]-code over F3.

• C := {00, 1ξ, ξξ2, ξ21} is a linear [2, 1, 2]-code over F4.

14 Linear codes

(2.3) Definition.
The weight w of a codeword is the total number of non-zero elements in its
sequence:

w(01101101) = 5

(2.4) In a linear code C the minimal distance is also the least weight of the
codewords in C because if d = d(x, y) then x− y will be nonzero at exactly
those places where x and y differ.

∀x, y ∈ C : d(x, y) = w(x− y).

Because x − y is in C there will be a vector which has weight equal to the
minimal distance. Vice versa we have that d(o, x) = w(x) so the minimal
weight will be the minimal distance.

2 Basis and generator matrix

We will here review the concept of linearly dependence and see how it
relates to linear codes. If we consider some codewords x1, · · · , xk ∈ C then
they are said to be linearly independent if there exists no numbers ai ∈ F2

such that
a1x1 + · · ·+ akxk = 0

and not all the ai are zero. Otherwise {xi} is said to be linear dependent.

(2.5) Example.

0101, 0110, 0011

are linear independent because

a10101 + a20110 + a30101 = (0, a1 + a2, a2, a3) = 0000

implies that a1 = a2 = a3 = 0. On the other hand is

0111, 1111, 1110, 1001

linear dependent because

0111 + 1110 + 1001 = 0000

A subset S ⊂ C is said to be generating if all codewords in C can be ex-
pressed as a linear combination of codewords in S. S is said to be a base if it
is both linear independent and generating. If this is the case any codeword
in C can be written as unique combination of base elements.

2 Basis and generator matrix 15

(2.6) Example.
If we consider the binary code

C := {00000, 11110, 01011, 10101}

then there are three possible bases containing all 2 elements

B1 := {11110, 01011}
B2 := {10101, 01011}
B3 := {11110, 10101}

A very easy way to handle vector spaces is using matrices. Matrices over
finite fields multiply just the way they do over the real numbers, except
that you must use the calculation rules of the field (e.g. in F2 1 + 1 = 0).

(2.7) Example.

(
1 0 1
1 1 0

)1 0
1 1
0 1

 =
(

1 · 1 + 0 · 1 + 1 · 1 1 · 0 + 0 · 1 + 1 · 1
1 · 1 + 1 · 1 + 0 · 0 1 · 0 + 1 · 1 + 0 · 1

)
=
(

0 1
0 1

)
Calculating the determinant of a matrix is also done in the ordinary way
(remember that in F2, we can replace all the minus signs by plus signs).

Det
(

1 1
0 1

)
= 1 · 1 + 1 · 0 = 1

(2.8) Definition.
When we have anm-dimensional codeC with a base in it then we can make
a m × n-matrix. The rows of this matrix consist of the base-vectors of the
considered base. This matrix is called a generator matrix.

(2.9) We know that there are qm code words so it is reasonable to consider
the set of messages equal to the space Fmq . Encoding the message means
that we assign to each message word a unique codeword. This can be done
easily by considering the message as a row-matrix and multiplying it with
the generator matrix. The encoding depends highly on the generator ma-
trix, different generator matrices give different encodings but use the same
codewords.

(2.10) In fact if we multiply the generator matrix on the left by an invertible
m ×m-matrix we will obtain a new generator matrix because multiplying
on the left corresponds to a base change in the C.

16 Linear codes

(2.11) One could also try to multiply on the right with an invertible matrix
but doing this will alter the corresponding code, such that the decoding
capacities will alter as well. However if we multiply on the right by a per-
mutation matrix (i.e. a matrix which has in every row and every column
exactly one 1 and all the other entries zero) this will correspond to a per-
mutation of the columns of the generator matrix. This means that we just
constructed a new code by switching some of the digits around i.e. we per-
formed a positional permutation. This operation will not alter the minimal
distance of the code as we have seen in chapter 1.
In chapter 1 we have also performed symbolic permutations on codes,
however unlike positional permuations they can destroy the linear struc-
ture of the code. E.g. look at the binary code {000, 110, 011, 101}. This
is a linear code but if we switch 0 and 1 in all positions the new code
{111, 001, 100, 010} is not linear anymore.
Therefore we call two linear codes linearly equivalent (or shortly equivalent)
if they can be transformed into each other using only positional permuta-
tions.

(2.12) Example.
If we consider the code

C := {00000, 11110, 01011, 10101}

then there are 6 possible generator matrices two for each base

B1 7−→
(

1 1 1 1 0
0 1 0 1 1

)
,

(
0 1 0 1 1
1 1 1 1 0

)
B2 7−→

(
1 0 1 0 1
0 1 0 1 1

)
,

(
0 1 0 1 1
1 0 1 0 1

)
B3 7−→

(
1 0 1 0 1
1 1 1 1 0

)
,

(
1 1 1 1 0
1 0 1 0 1

)
And if we take an invertible 2× 2-matrix and multiply it with one of these
generator matrices(

1 1
1 0

)(
1 1 1 1 0
0 1 0 1 1

)
=
(

1 0 1 0 1
1 1 1 1 0

)
we obtain again one of the six generator-matrices. However if we multiply
on the right with a permutation matrix

(
1 1 1 1 0
0 1 0 1 1

)
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

 =
(

1 1 0 1 1
0 0 1 1 1

)

2 Basis and generator matrix 17

We obtain a generator matrix of a different code

C ′ := {00000, 11011, 00111, 11100}

This code is in fact equivalent toC and has thus the same minimal distance:
3.

(2.13) Definition.
A generator matrix G whose left part is the identity matrix, i.e. G = [ImX],
is said to be in normal position. For the code we considered in the previous
example, is (

1 0 1 0 1
0 1 0 1 1

)
a generator matrix in normal position. A code that admits a such generator
matrix is called a systematic code.

A systematic code is easier to decode than an ordinary code, especially
when no errors have occured. This is because if m is the message we want
to encode the corresponding codeword is

mG = m[IX] = [mmX]

so the first m digits of the codeword are equal to the message itself.
Luckily we have the following theorem.

(2.14) Theorem.
Every linear code is linearly equivalent to a systematic code.

Proof. Take any generator matrix A for the code C. Perform the following
algorithm

(2.15) Algorithm. Gauss-Jordan elimination
Input: An m× n matrix A.
For i = 1 to m do:

swap rows as necessary to ensure that the leftmost nonzero element starting from
row i is in row i,

divide row i by this element.

make zeroes in this column. That is, where the first nonzero in row i is in
column j, subtract an appropriate multiple of row i from each row below
and above it so that there are zeros in column j below and above row i.

18 Linear codes

After these steps we obtain an m× n matrix A′ in reduced row echelon form.
From linear algebra we know that A′ = BA for some invertible matrix B because
we only performed invertible row operations. In other words A′ is also a generator
matrix of C.
construct the systematic code: Let pi denote the position of the first nonzero
element of A′ on row i. By our construction the column pi is the zero column
with only a one on row i. Now permute the colums in such a way that column pi
becomes column i. After this permutation the new matrixA′′ is a generator matrix
in normal position.

3 The parity check matrix

On the vector space C we can also define a scalar product ·. This maps
every pair of codewords onto Fq in a bilinear way

(2.16) Definition.

∀x := x1 · · · xn, y := y1 · · · yn ∈ Fnq : x · y = x1y1 + · · ·+ xnyn ∈ Fq

two sequences whose scalar product is 0 are said to be orthogonal. Note that
we also have the following identity:

∀x, y, z ∈ Fnq : (x + y) · z = x · z + y · z

The orthogonal complement of a subset S ⊂ Fnq is the set of all sequences that
are orthogonal to each sequence in S:

S⊥ := {x ∈ Fnq |∀y ∈ S : x · y = 0}

(2.17) Example.
Here we first compute the scalar product of two sequences in F2.

11001 · 01101 = 1 · 0 + 1 · 1 + 0 · 1 + 0 · 0 + 1 · 1
= 0 + 1 + 0 + 0 + 1 = 0

We can also compute the orthogonal complement of the code

C := {00000, 11110, 01011, 10101}
C⊥ := {00000, 11110, 01010, 10100,

11001, 00111, 10011, 11001, 01101}

3 The parity check matrix 19

which is a again a linear code because of the distributivity of the scalar
product:

x · y = x · z =⇒ x · (λy + µz) = 0

This code is called the orthogonal code or dual code. In general if C is an
[n,m, d]-code then its orthogonal code is an [n, n−m, e]-code, where e has
to be determined by checking.

When we have a code C then C⊥ is again a code, so we can consider a
generator matrix of this code. If we call G the generator matrix of C and H
a generator matrix of C⊥ then the following identity holds:

GHt = HGt = 0

where ·t stands for the transposed of a matrix. We will call H the parity
check matrix of the code C. If G is a generator matrix in standard form
[ImX] we can also choose a special form of the parity check matrix

Ht =
(
−X
In−m

)
because

(
1m X

)(−X
1n−m

)
= (X −X) = 0

The parity check matrix is a very useful tool in decoding the code. Because
H is a generator matrix of the orthogonal code, the following holds

c ∈ C ⇐⇒ Hct = o

(2.18) Definition.
For a random word x ∈ Fnq we define its syndrome as

s(x) := Hxt ∈ Fn−mq .

The codewords are the words with zero syndrome.

Suppose we receive a word r then we can assume that it is of the form
c + e where c is the transmitted codeword, and e is the error vector. So to
remove the errors from r we have to find e. If we look at the syndrome of
r we see that it only depends on the error vector and not on the codeword.
So instead of looking at the received word we should concentrate on the
syndromes.
One should make a list of all possible syndromes and associate to each one
the error vector with the least weight producing that syndrome, and thus
the most likely to have occured. It is not always true that there is such a
unique error vector, more than one error vector can have the same weight
and syndrome. If this is the case we denote this also in the list.

20 Linear codes

(2.19) Algorithm. Encoding and decoding a linear code
Suppose that C is a systematic [n,m, d]-code and G is a generator matrix in nor-
mal position with H the corresponding parity check matrix.
Encoding
Take the message word m ∈ Fm2 and multiply it with G and transmit it.
Decoding

1. Make a list of syndromes and corresponding error vectors

2. Compute the syndrome of the received codeword s := Hrt.

3. Look in the list of syndromes which error vector e corresponds to s. If there
is only one code, subtract it from r. The message word m is most likely
to be the first m bits of r + e. If there are more error vectors, all those
give equally probable message words, so if possible one should better ask for
retransmission.

(2.20) Example.
Consider the [5, 2, 3]-code with generator matrix

G :=
(

1 0 1 1 0
0 1 0 1 1

)
The possible messages and their codewords are then

message code word
00 00000
10 10110
01 01011
11 11101

The parity check matrix is

H :=

1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 .

The list of possible syndromes and error vectors:

Syndrome error vectors
000 00000
100 00100
010 00010
110 10000
001 00001
101 11000, 00101
011 01000
111 10001, 01100

3 The parity check matrix 21

Suppose we receive 11011, computing the syndrome gives s := 110 so the
error vector is 10000 and the corrected code word is 01011 and the message
was 01.
Suppose we receive 00111, computing the syndrome gives s := 111. There
are two equally probable error vectors, so the code word could either be
10110 or 01011.

Chapter 3

Perfect codes

1 Introduction

(3.1) One of the main challenges of coding theory is to find the best possi-
ble codes, but what are in fact the criteria for a good code? One wants to
transmit as fast as possible, as many as possible information over a channel,
such that there occur as few as possible mistakes.

(3.2) So for a linear [n,m, d]-code over a field Fq one wants to increase both
the ratio m/n and d/n. As is expected one can not improve them both as
much as one wants, because there are inequalities that are satisfied between
those parameters.

(3.3) One of those inequalities is called the sphere packing boundary. If the
minimum distance between two code words is d then one can draw around
each codeword c in Fnq a sphere with radius (d− 1)/2.

Bc := {x ∈ Fnq |d(x, c) ≤ d− 1
2
}

All those spheres are non-intersecting because if

x ∈ Bc1 ∩Bc2

then by the triangle inequality

d(c1, c2) ≤ d(c1, x) + d(x, c2) ≤
d− 1

2
+
d− 1

2
≤ d− 1

There are two code words at a distance less than d which is impossible.

24 Perfect codes

In each of these spheres there are exactly

∑
0≤i≤ d−1

2

(
n

i

)
(q − 1)i

words. This sum corresponds to the number of words with 0, 1, . . . , (d −
1)/2 errors:

(
n
i

)
= n!

(n−i)!i! counts the possible ways to choose the i-error
locations and (q−1)i counts the possible errors we can use in each location.
For each sphere we have different elements and there are qm spheres so the
union of all balls contains

qm

 ∑
0≤i≤ d−1

2

(
n

i

)
(q − 1)i)


elements. There are only qn elements so the expression above is smaller
than qn. From this we can conclude:

(3.4) Theorem. Sphere packing boundary
For every linear [n,m, d]-code over Fq we have that

∑
0≤i≤ d−1

2

(
n

i

)
(q − 1)i ≤ qn−m.

This warrants the following definition.

(3.5) Definition.
A linear [n,m, d]-code over Fq is perfect if the the balls Bc cover whole Fnq .
This holds if and only if

∑
0≤i≤ d−1

2

(
n

i

)
(q − 1)i = qn−m.

(3.6) In the previous chapter we have seen how to decode a linear code by
using a table of syndromes. To every syndrome corresponded one or more
error vectors. When we had a syndrome with more than one error vector,
we could not uniquely decode the received message. In the case of perfect
codes this last situation does not occur.

2 Repetition codes 25

(3.7) Lemma.
A linear code is perfect if and only if for every syndrome there is a unique error
vector of weight ≤ d−1

2 .

Proof. For every linear [n,m, d]-code there are always qn−m syndromes. Er-
ror vectors inside the ballBo all have a different syndrome because the code
is d−1

2 error correcting. By the pigeon-hole principle every syndrome has a
unique error vector as soon as the number of elements in the ball equals the
number of syndromes i.e. is the sphere packing boundary is reached.

As we’ve seen perfect codes are in many ways very good, but unfortunately
these codes are very rare. In what follows we will describe all perfect linear
codes.
First notice that a code can never be perfect if its minimal distance is even.
In this case, there would exist words that are at distance d/2 of two code
words. so the syndrome decoding can’t be unique.

2 Repetition codes

A trivial class of linear codes are the binary repetition codes.

(3.8) Definition.
A binary repetition code is a code consisting of two code words

C := {0 . . . 0, 1 · · · 1}.

A repetition code has as parameters [n, 1, n] and so it is easy to check whether
such a code is perfect.

(3.9) Theorem.
A binary repetition code is perfect if and only if n is odd.

Proof. We already know that n has to be odd so n = 2t+ 1. We can use the
binomial of newton

t∑
i=0

(
i

n

)
(2− 1)i =

t∑
i=0

1
2

(
(
n

i

)
+
(

n

n− i

)
)(1)i

=
1
2

n∑
i=0

(
n

i

)
= 2n−1.

26 Perfect codes

3 Hamming codes

In this section, we consider an important family of perfect codes which are
easy to encode and decode.
We first start with binary Hamming codes and afterwards we define them
for arbitrary finite fields.

(3.10) Definition.
A binary code is a Hamming code if it has a parity check matrixH ∈ Matr×2r−1(F2)
consisting of all possible column vectors of Fr2.(

v1 . . . vn
)
, vi ∈ Fr2 − {0}

We denote this Hamming code as Ham(r, 2).

(3.11) Example.
If r= 2 this means that

H :=
(

1 1 0
1 0 1

)
=⇒ G :=

(
1 1 1

)
.

So Ham(2, 2) is the binary repetition [3,1,3]-code. Notice that this is the only
Hamming code that is a repetition code because d = 3 for a Hamming code
and d = n for a repetition code.

(3.12) Example.
If r= 3 this means we can put H in standard form like

H :=

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1


This gives us as generator matrix:

G :=


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 1 1 0

 .

(3.13) Lemma.
Two Hamming codes with the same parameters are equivalent.

3 Hamming codes 27

Proof. IfH andH ′ are paritity check matrices for Hamming codes than they
have the same columns. This means there is a permutation matrix P such
that H ′ = HP . This implies that if G′ is a generator matrix for the second
Hamming code then G′H ′⊥ = G′(HP)”ot = (G′P⊥)H so G′P⊥ is a gen-
erator matrix for the first Hamming code. Now P⊥ is also a permutation
matrix so G and G′ generate equivalent codes.

(3.14) Theorem.
Ham(r, 2) is a perfect [2r − 1, 2r − r − 1, 3]-code.

Proof. By the dimension of the parity check matrix we know that n = 2r−1
and m = 2r − 1 − r. We now have to prove that the minimal weight of
a codeword is 3. Suppose thus c is a codeword with weight one or two.
Then we should have that Hct = o. But Hct is the sum of maximum 2
column vectors ofH so this should mean that two columns ofH are linearly
dependent. This is impossible because two different vectors over F2 are
always linearly independent (*). But the minimal weight is also equal to
3. H contains the columns 100 . . . 0t,010 . . . 0t and 110 . . . 0t at the i, j, kth

position. Construct the word c containing a 1 at those 3 places and zero’s
everywhere else this is a codeword because

cHt = 100 . . . 0 + 010 . . . 0 + 110 . . . 0 = o.

Finally we prove that Ham(r, 2) is perfect.

1∑
i=0

(
i

n

)
= 1 +

(
2r − 1

1

)
= 2r = 22r−1−(2r−r−1) = 2n−m

(3.15) Encoding the Hamming code is done by using the generator matrix.
Because d = 3 the code is one error correcting and the possible error vec-
tors are of the form ej = 0 · · · 010 · · · 0 where the one is at position j. The
syndrome of ej is equal to the jth column of H . To decode we proceed like
this:

(3.16) Algorithm. Decoding the binary Hamming code
Suppose we receive the word r and G and H are in standard position

1. Calculate the syndrome s = Hrt

2. If s = o the original code word was r and the message words are the first
2r − r − 1 symbols of r.

28 Perfect codes

3. If s 6= o we suppose that one error has occurred. The position of this error is
the position of the column vector of H equal to s.

(3.17) One can generalize binary Hamming codes to Hamming codes over
arbitrary fields. However one must take care in the construction of the par-
ity check matrix. One cannot take all possible vectors of Frq to construct the
parity check matrix because there are two of them that can be linear de-
pendent of each other and this would destroy the argument (*) in theorem
3.14.
So if we use v ∈ F rq \ {0} then we cannot use kv where k ∈ Fq \ {0, 1}). So
one has to take for each ray of vectors only one representative inH . The set
of all nonzero vectors contains qr− 1 elements and every ray contains q− 1
elements. Therefore the number of such rays is equal to qr−1

q−1 .

(3.18) Example.
If r= 2 and q = 3 this means that

H :=
(

1 1 1 0
2 1 0 1

)
=⇒ G :=

(
1 0 2 1
0 1 2 2

)
.

To compute G we use the fact that −1 = 2 mod 3. So Ham(2, 3) is a [4,2,3]-
code.

(3.19) Example.
If r= 2 and q = 5 this means that

H :=
(

1 1 1 1 1 0
4 3 2 1 0 1

)
=⇒ G :=


1 0 0 0 4 1
0 1 0 0 4 2
0 0 1 0 4 3
0 0 0 1 4 4

 .

So Ham(2, 5) is a [6,4,3]-code.

(3.20) Example.
If r = 3 and q = 3 we can put H in standard form like

H :=

0 0 1 1 1 1 1 1 1 1 1 0 0
1 1 0 0 1 1 1 2 2 2 0 1 0
1 2 1 2 0 1 2 0 1 2 0 0 1


and we get a [13, 10, 3]-code.

4 The ternary Golay-code 29

Just like the binary codes we have this theorem

(3.21) Theorem.
Ham(r, q) is a perfect [q

r−1
q−1 ,

qr−1
q−1 − r, 3]-code over Fq

(3.22) Exercise.
Prove the theorem above

(3.23) Exercise.
Design a decoding algorithm for non-binary Hamming codes.

(3.24) Exercise.
Write source code to encode and decode both binary and non-binary Ham-
ming codes.

4 The ternary Golay-code

(3.25) Hamming-codes form an infinite series of codes that are perfect,
apart from these codes there are also a limited number of special linear
codes. These codes were discovered by Marcel Golay and hence they are
called Golay codes.

First we construct the ternary Golay code.

(3.26) Definition.
Consider the field F3 and take the matrix

S5 :=


0 1 2 2 1
1 2 2 1 0
2 2 1 0 1
2 1 0 1 2
1 0 1 2 2

 .

The ternary Golay code Gol(11, 3) is a [11, 6] code over F3 with generator

30 Perfect codes

matrix

G :=



1 0 0 0 0 0 1 1 1 1 1
0
0
0 I5 S5

0
0


and parity check matrix

2 0 2 1 1 2 1 0 0 0 0
2 2 0 2 1 1 0 1 0 0 0
2 1 2 0 2 1 0 0 1 0 0
2 1 1 2 0 2 0 0 0 1 0
2 2 1 1 2 0 0 0 0 0 1

 .

(3.27) Theorem.
The ternary Golay code is a perfect 2 error correcting code.

Proof. One can compute that

GGt =



0 0 0 0 0 0
0 2 2 2 2 2
0 2 2 2 2 2
0 2 2 2 2 2
0 2 2 2 2 2
0 2 2 2 2 2

 .

So if x := x1 · · · x6 is a message word xG will be a code word and hence

xG · xG = xGGtxt

= 2

(
6∑
i=2

xi

)2

.

Because 1 is the only non zero square in F3, xG · xG 6= 1. But in F3 xG · xG
is equal to the weight modulo 3. So the weight cannot be 1, 4, 7 or 10.
The weight of a codeword xG is always at least the weight of x because the
first 6 symbols of xG are x.
If x has weight 1, xG has weight at least 5 because all rows of G have
weights bigger than 4. Suppose that x has weight 2 then xG has weight
bigger than 4. Take two rows Gi and Gj of G and look at the quotients of
the last five entries: Gi6/Gj6, · · · , Gi11/Gj11. There are at least 3 different
quotients. Every linear combination will have at least 2 nonzero symbols
in the last 5 digits, so the weight is at least 4 and hence 5 or more.

5 Binary Golay-codes 31

If x has weight 3 one can do a similar thing using the fact that the submatrix
consisting of the last five digits of 3 rows of G has rank 3.

Now we’ve proven that the minimal weight is 5, we only have to check the
sphere packing identity:

2∑
i=0

(
11
i

)
2i = 1 + 2

(
11
1

)
+ 4
(

11
2

)
= 1 + 22 + 220 = 243 = 35 = 311−6

(3.28) Aside. The Finnish Football-Pool Connection
The ternary Golay code was first discovered by the Finn Juhani Virtakallio
who was determining good strategies for betting on blocks of 11 soccer
games. The betting game goes as follows. For every one of the 11 matches
one can predict a Win, Lose, or Tie for all 11 games. If you do not miss more
than two of them, you win the bet. If a group of players gets together in
a pool and makes multiple bets to cover all the options (so that no matter
what the outcome, somebody’s bet comes within 2 of the actual outcome),
then the codewords of the golay code provide a very nice option: the balls
around its codewords fill all of the space, with none left over.

It was in this vein that the ternary Golay code was first constructed and its
729 codewords appeared in 1947 in the football magazine Veikkaaja.

Veikkaaja

5 Binary Golay-codes

In this section we describe both the extended binary Golay code and the
perfect binary Golay code, because they are both of practical importance.

32 Perfect codes

(3.29) Let B be the 12× 12 matrix over F2

B :=



1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 1 1 1
0 0 1 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 1
1 0 1 1 0 1 1 1 0 0 0 1
0 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0


This matrix is symmetric and if one looks at the submatrix consisting op
the first 11 rows and columns one can easily check that the rows are cyclic
permutations of each other. Another property of B is that B2 = I12.

(3.30) Definition.
The extended golay-code Gol(24, 2) is a binary code with generator matrix

G := [I12B].

Because B is its own inverse, not only [BI12] is a parity check matrix but G
itself as well. Also [BI12] is a generator matrix for Gol(24, 2).

(3.31) Theorem.
The minimal weight of Gol(24, 2) is 8.

Proof. First we prove that the weight of a random codeword is a multiple
of 4. Because GGt = 0 the inproduct of two code words is zero. This means
that the number of entries where they are both 1 is even. Suppose now that
x and y are two codewords of which the weight is a multiple of four then

w(x + y) = w(x) + w(y)− 2(#common 1′s between x and y)

This expression is again a multiple of four because all its terms are. Notice
that the rows of G all have weight 8 or weight 12, so every code word has
weight 4k, k ∈ N.
Now we prove that no code word can have weight four. Suppose xG = xxB
is a code word of weight four. Because [BI12] is also a generator matrix,
there exists a y such that

xG = x xB︸︷︷︸ = y[BI12] = yB︸︷︷︸ y = xy

5 Binary Golay-codes 33

Therefore either x or y must have a weight smaller or equal than 2. If this
is the case for x we know that xG is the sum of at most two rows of G and
can never have weight equal to 4. For w(y) ≤ 2 we proceed the same.

(3.32) We will now search for a decoding algorithm for Gol(24, 2). Because
the minimal weight is 8 we will be able to correct all error vectors with
weight smaller than 4. Take H := G to be the parity check matrix and
suppose we have an error vector e with weight at most 3. We will split up
our error vector in two parts of length 12 e := [e1, e2]. The syndrome of
such and error vector is

s = Get = e1
t +Be2

t.

Because the weight of e is smaller than 4 either e1 or e2 has weight smaller
than 2.
Suppose first that the weight of e2 is at most 1, then s the syndrome consist
of either a word of weight at most 3 (if e2 = o) or a row of B with at most
two digits changed.
If the weight of e1 is at most 1 then one can do the same but now using the
syndrome

t = [BI12]et = Be1
t + e2

t = Bs.

(3.33) Algorithm. Decoding the extended Golay code
We receive the word r.

1. Compute the syndrome s = Grt

2. If w(s) ≤ 3 then e := [s, o], stop.

3. If w(s + Bi) < 3 then e := [s + Bi, δi] where δi stands for the vector with
everywhere zero’s except on the ith place a 1. Stop.

4. Compute t := Bs.

5. If w(t) < 3 then e := [o, t], stop.

6. If w(t +Bi) < 3 then e := [δi, t +Bi], stop.

7. If e is not determined request retransmission.

(3.34) Aside.
The Voyager mission In the late seventies NASA set up a mission to explore

Voyager IIthe outer planets of the solar system. This mission visited Jupiter, Saturn,
Uranus and Neptune. The images of those planets and their moons had

34 Perfect codes

to be transmitted over several billions of kilometers. In order to achieve
good quality NASA used the binary extended Golay code for encoding the
photographs.

The last code we will see in this chapter is the binary Golay code.

(3.35) Definition.
The binary Golay code Gol(23, 2) has as generator matrix, the generator
matrix of Gol(24, 2) except for the last column which is omitted. Because
the minimal weight of Gol(24, 2) is 8 the minimal weight of this code will
be 7.

(3.36) Theorem.
Gol(23, 2) is a perfect [23, 12, 7]-code.

Proof. We only have to calculate the sphere packing identity.

3∑
i=0

(
23
i

)
2i = 1 +

(
23
1

)
+
(

23
2

)
+
(

23
3

)
= 1 + 23 + 253 + 1771 = 2048 = 323−12

(3.37) How do we decode Gol(23, 2)? We already have a decoding algo-
rithm for Gol(24, 2) so we can use this. Suppose we receive r, we have
to transform it into a word of 24 bit. We know that both Gol(23, 2) and
Gol(24, 2) can correct 3 errors. Because every error changes the weight of a
word by 1 and codewords in Gol(24, 2) have even weight, message words
with an odd weight will contain an odd number of errors.
If r contains at most 3 errors we want to add one bit in order to have a
message word for Gol(24, 2). We do this by adding a 0 or a 1 such that
w(r1) or w(r0) is odd. Call this new word r′. Because r′ has odd weight
it contains an odd number of errors and we know that it contains at most
3 errors in the first 23 digits, so it contains as a whole also at most 3 errors.
Knowing this we can decode r′ by extended Golay code algorithm.
In practice, the received word is almost always a code word, however r′ is
never a codeword. In that case computing the syndrome will give us the
last row of B. It is useful to check this at the start of the algorithm rather
than to wait until step 3.

(3.38) Aside.

M.E. Golay (1902 - 1989)

6 Fundamental theorems 35

Marcel J.E. Golay was a Swiss-born mathematician, physicist, and infor-
mation theorist, who applied mathematics to real-world military and in-
dustrial problems. Golay worked on many problems, including the devel-
opment of the Golay codes. and the generalization of the perfect binary
Hamming codes to non-binary codes.

6 Fundamental theorems

(3.39) Have we in fact considered all possible perfect codes or are there
other ones? In the case of linear codes this is actually the case, but one
can also define perfect non-linear codes. In general van Lint (and others)
proved the following theorem

(3.40) Theorem. van Lint-Tietäväinen
Every perfect linear code over Fq symbols where q is a prime power, has the param-
eters of a repetition code, a Hamming or a Golay code (Gol(23, 2) or Gol(11, 3)).

H.J. Van Lint

(3.41) In 1975 Delsarte and Goethals proved that every code with the pa-
rameters of a Golay code is in fact a Golay code. On the other hand one
can prove easily that every linear code with the parameters of a Hamming
code is a Hamming code.

(3.42) Exercise.
Prove that every linear code with the parameters of a Hamming code is a
Hamming code.

(3.43) Exercise.
Prove that every linear code with the parameters of a repetition code is a
repetition code.

(3.44) Theorem. van Lint-Tietäväinen
Every perfect linear code over Fq is a repetition, a Hamming or a Golay code.
(Gol(23, 2) or Gol(11, 3)).

A. Tietäväinen

(3.45) There exist however perfect non-linear codes that have the parame-
ters of a Hamming code. Those were constructed by Schönheim and Lind-

36 Perfect codes

ström in 1968-69. It remains an open question whether there exist perfect
codes over alphabets where the number of symbols is not a prime power.

Chapter 4

Cyclic Codes

1 Introduction

In the previous chapter we saw examples of linear codes, that are practical
to use and have good properties, but because these codes are rare one has
little flexibility in choosing appropriate parameters for the code you need.
In this chapter we will introduce a new variety of codes that are easy to
construct and adapt to different situations.

(4.1) Definition.
A linear [n,m]-code C is called a cyclic code if and only if for every word
x := x1 · · · xn

x1 · · · xn ∈ C =⇒ xC := x2 · · · xnx1 ∈ C.

So every cyclic shift of a codeword is again a codeword.

This property seems very strict but in fact there are many codes that are
cyclic.

(4.2) Example.
The Hamming code Ham(3, 2) as we’ve seen it in the previous chapter is not
cyclic but it is equivalent to a cyclic code if we take another parity check
and generator matrix. Take

H :=

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

One sees that the rows of this matrix are cyclic permutations of each other
and if we cycle these rows further they still remain linear combinations of

38 Cyclic Codes

the first 3 rows:

1001011 = 1011100 + 0010111

1100101 = 1011100 + 0101110 + 0010111

1110010 = 1011100 + 0101110

0111001 = 0010111 + 0101110

So the code with H as generator matrix is cyclic.
Because xC · yC = x · y the orthogonal complement of a cyclic code is cyclic
as well.

Because we introduced an extra property to the linear codes, we can put an
extra structure onto the vector space of code words we’re working with.
With every element of Fnq one can associate a polynomial of degree at most
n− 1 like this

Fnq → Fq[X] : c0 · · · cn−1 7−→ c0 + c1X + · · ·+ cn−1X
n−1.

If we multiply such a polynomial with X we see that all the coefficients
shift one position to the right. However because cn−1 also shifts one to the
right and not to the first position, the new polynomial doesn’t correspond
anymore to a codeword. This problem is solved by identifying Xn with 1.
This means that one has to work in the quotientring

Fq[X]/(Xn − 1)

rather than in Fq[X]. In this ring multiplying by X corresponds to a cyclic
shift of the coefficients.
We have a bijective map

P : Fnq → Fq[X] : c0 · · · cn−1 7−→ [c0 + c1X + · · ·+ cn−1X
n−1]Xn−1.

and this map satisfies that

P(cC) = XP(c).

The image of a cyclic code under P corresponds to a subset of Fq[X]/(Xn−
1) closed under addition and multiplication by X and hence multiplication
by every element of Fq[X]/(Xn − 1):

(a0 + a1X + · · ·+ akX
k)P(c) = P(a0c + a1c

C + · · ·+ akc

C · · ·C︸ ︷︷ ︸
k×

Such a subset is called an ideal of Fq[X]/(Xn − 1).

2 Generator polynomial and check polynomial 39

(4.3) Definition.
An ideal of R = Fq[X]/(Xn − 1) is a subset c ⊂ R such that

∀a, b ∈ c : ∀r ∈ R : a+ b ∈ c&ra ∈ c

(4.4) Theorem.
There is a bijective correspondence between cyclic n-codes over Fq and ideals in
Fq[X]/(Xn − 1).

Proof. Try it yourself.

From now on we will identify a cyclic code with its corresponding ideal.

2 Generator polynomial and check polynomial

For linear codes we had a generator matrix, in the case of cyclic codes one
can prove the following:

(4.5) Theorem.
For every ideal (or cyclic code) c ⊂ Fq[X]/(Xn − 1) there exists a polynomial
g(X) ∈ Fq[X]/(Xn − 1) such that:

c := {a(X)g(X)|a(X) ∈ Fq[X]/(Xn − 1)}

Proof. Define g(X) to be a polynomial in c with lowest degree. Every other
polynomial f(x)c must be divisible by g(X). If not we could perform a
division and write f(X) = q(X)g(X) + r(x) with deg r(X) < deg g(X).
Because an ideal c is closed under addition and multiplication with ele-
ments of Fq(X)/(Xn− 1), r(x) = f(X)− q(X)g(X) is again a code polyno-
mial. This contradicts the fact that g(X) has the lowest degree.

We call g(X) a generator polynomial for c.
Writing g(X) = g0+g1X+· · ·+gkXk we see that g(X), Xg(X), . . . , Xn−k−1g(X)
form a Fq-basis for c and hence

G =


g0 g1 . . . gk

g0 g1 . . . gk
.

. . .
g0 g1 . . . gk

 ∈ Matn−k×n(Fq)

is a generator matrix for the code.

40 Cyclic Codes

(4.6) Theorem.
For a non-trivial cyclic code c ⊂ Fq[X]/(Xn−1) the generator polynomial divides
Xn − 1.

Proof. If g(X) doesn’t divide Xn− 1 then one can look at the rest of Xn− 1
divided by g(X). This rest r(X) has lower degree than g(X) but it is a linear
combination of g(X) and Xn − 1 (= 0 ∈ c) so it is again an element of the
code. But this is impossible because g(X) is the element of the code with
the lowest degree.

(4.7) Definition.
Define h(X) := Xn−1

g(X) to be the check polynomial of c.

One can easily prove that c(X) is a code polynomial if and only if

h(X)c(X) ≡ 0 mod Xn − 1.

(4.8) If we go back to the vector space representation we can model multi-
plication by h(X) as matrix multiplication with

H =


hn−k hn−k−1 . . . h0

hn−k hn−k−1 . . . h0

.
. . .

hn−k hn−k−1 . . . h0

 ∈∈ Matk×n(Fq).

So this H is the parity check matrix for our code.

(4.9) Example.
Because the parity check matrix of the Hamming code in the previous ex-
ample

H :=

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


we can deduce that h(X) := X4 +X2 +X+1 and g(X) := (X7−1)/h(X) =
X3 +X + 1

(4.10) An interesting way of encoding a cyclic code is systematic encoding.
If we encode just by multiplying with g(X) the code word will not contain

2 Generator polynomial and check polynomial 41

the original message because the generator matrix

G =


g0 g1 . . . gk

g0 g1 . . . gk
.

. . .
g0 g1 . . . gk


Does not contain the identity matrix. To remedy this problem one tries to
construct a codeword of our code that contains the original message plus
some check digits. This is done as follows:
Suppose u(X) is the message we want to encode and that n−k is the degree
of g(X). Xn−ku(X) will then be the message shifted to the last k of the n
digits of the codewords. However Xn−ku(X) itself is not a code word. If
we want to make a code word without destroying the digits from u(X) one
has to change the first n − k digits. Because of the division algorithm we
have the identity

∃q(X), r(X) : Xn−ku(X) = q(X)g(X) + r(X).

This implies that Xn−ku(X)− r(X) is a codeword satisfying our demands,
because the two terms of the sum do not overlap.

(4.11) Given any divisor g(X)|Xn − 1 we have a uniqe cyclic [n,m, d]-code
with this divisor as generator polynomial. The dimension of the code is
m = n − deg g(X) but it is not clear what the minimal distance d is for
a given g(X) or how one can find a g(X) such that d is a certain given
number. In the final chapter we will investigate these problems.

Chapter 5

Reed-Solomon Codes

1 Definition

Reed-Solomon codes are an important sub-class of the cyclic codes. These
codes are frequently used in applications. Before we introduce them, we
first need to recall the following fact about finite fields.

(5.1) Lemma.
In any finite field Fq there is an element α ∈ Fq such that every nonzero element
of the field is a power of α:

Fq = {0, α0, α, α2, α3, · · · , αq−2}

This element is called a primitive element.1

Note that taking higher powers of α makes you run back through the same
elements: αq−1 = α0 = 1, αq = α1, etc. This implies that for every nonzero
element αk we have, (αk)q−1 = (αq−1)k = 1k = 1. Hence, over Fq the
polynomial Xq−1 − 1 can easily be factorized:

Xq−1 − 1 =
q−2∏
i=0

(X − αi).

(5.2) Definition.
A Reed-Solomon code is a cyclic code of length q − 1 over the field Fq with
generator polynomial

g(X) =
2t−1∏
j=0

(X − αj)

1Such an element is not unique. More information about this can be found in the ap-
pendix.

44 Reed-Solomon Codes

Where α is a primitive element of Fq.

(5.3) Theorem.
The parameters of the Reed-Solomon code are [q − 1, q − 2t− 1, 2t+ 1]

Proof. The first parameter is q − 1 by definition, the second parameter is
q − 1 − 2t because deg g(X) = 2t. Now we only need to prove that all
codewords have weights bigger than 2t.
Suppose e(X) =

∑ν
l=1 eilX

il is a polynomial of nonzero weight ν < 2t + 1
then this can never be a codeword because otherwise e(X) = g(X)m(X)
and e(αj) = g(αj)m(αj) = 0 for j ≤ 2t− 1, so we would have as equations

ei1(α0)i1 + ...+ eiν (α0)iν = 0
...

ei1(αν−1)i1 + ...+ eiν (αν−1)iν = 0.

These equations can be solved uniquely as long as the following determi-
nant is not zero.

det

 (α0)i1 · · · (α0)iν
...

...
(αν−1)i1 · · · (αν−1)iν

 =
∏
κ<λ

(αiκ − αiλ)

This identity is obtained by using formula for the Vandermonde determi-
nant2. Because the αiκ 6= αiλ whenever iκ 6= iλ and both exponents are
smaller than q − 1 the determinant is not zero and the only possible solu-
tion is the zero solution. So a polynomial of nonzero weight smaller then
2t+ 1 can never be a codeword.
There is however a codeword of weight 2t+ 1 nl. g(X) = g0 + g1X + · · ·+
g2tX

2t.

(5.4) Theorem.
An [n, k, d] Reed-Solomon code is maximal distance separable, i.e. it has the great-
est possible minimal distance of all possible codes with the same n and k.

Proof. For a general linear [n, k]-code d ≤ n − k + 1. This is because the
parity check matrix has n − k rows it has rank at most n − k So there is a
linear combination of n − k + 1 columns of H that gives us 0. This linear
combination can be written as Hxt = 0 for a certain vector x with weight
n− k + 1. This implies that x is a codeword and hence d ≤ n− k + 1.

2Try to prove this yourself using induction or check
www.proofwiki.org/wiki/Vandermonde Determinant

2 Syndromes for Reed Solomon codes 45

For a Reed-Solomon code k = q − 2t − 1 and d = 2t + 1 = (q − 1) − (q −
2t− 1) + 1 = n− k + 1 so it has the largest minimal distance possible.

(5.5) This does not however imply that Reed-Solomon codes are the best
codes that exist. There are other combinations of n and k for which there
exist no Reed-Solomon codes, but for which other codes exist that have bet-
ter minimum distance. One of the disadvantages of Reed-Solomon codes is
that the size of the alphabet determines the size of the code. There are ways
to avoid this problem using more sofisticated techniques in finite fields but
we will not go into this.

(5.6) Example.
Let’s take q = 5 and t = 1. A possible choice for α is 2: the powers of 2 mod
5 are:

1 = 20, 2 = 21, 4 = 22, 3 = 23.

This means g(X) = (X − 1)(X − 2) = X2 + 2X + 2 and RS(5, 1) is a linear
[4, 2, 3]-code over F5.

(5.7) Example.
Let’s take q = 7 and t = 2. A possible choice for α is 3: the powers of 2 mod
7 are:

1 = 30, 3 = 31, 2 = 32, 6 = 33, 4 = 34, 5 = 35.

This means g(X) = (X − 1)(X − 3)(X − 2)(X − 6) and RS(7, 2) is a linear
[6, 2, 5]-code over F7.

(5.8) Aside.
These code were invented in 1960 by Irving S. Reed and Gustave Solomon,
who were then members of MIT Lincoln Laboratory. They published their
results in an article entitled ”Polynomial Codes over Certain Finite Fields.”
The first application had to wait until 1982 with the invention of the CD.

Reed and SolomonToday Reed-Solomon codes are used in a wide variety of commercial ap-
plications, most prominently in CDs, DVDs and Blu-ray Discs

2 Syndromes for Reed Solomon codes

The generator polynomial g(X) for Reed-Solomon codes was chosen specif-
ically such that it has zeros at 1, α, α2, . . . , α2t−1 , where α is a primitive el-
ement of Fq. This implies that if w(X) is the received polynomial coming

46 Reed-Solomon Codes

from a message m(X) and an error polynomial e(X) we get

w(αi) = m(αi)g(αi) + e(αi) = e(αi), i = 0, 2, . . . , 2t− 1,

(5.9) Definition.
For j = 0, 1, . . . , 2t− 1 we define the j-th syndrome for the received polyno-
mial r(X) as

Sj = r(αj) =
n∑
l=1

el(αj)l,

(5.10) Suppose that a total of ν errors occurred, located at positions i1, . . . , iν
with ν ≤ t,

e(X) = ei1X
i1 + ei2X

i2 + · · ·+ eiνX
iν .

Then the powers of X define the error locations, and the coefficients deter-
mine the error magnitudes. We can now write

S0 = ei1(αi1)0 + ei2(αi2)0 + · · ·+ eiν (αiν)0

S1 = ei1α
i1 + ei2α

i2 + · · ·+ eiνα
iν

...

S2t−1 = ei1(αi1)2t−1 + ei2(αi2)2t−1 + · · ·+ eiν (αiν)2t−1

We need to solve this set of equations for the αil and the eil .

Once these have been found, we can take logarithms (base α) in Fq:

logαX = j ⇐⇒ αj = X and 1 ≤ j ≤ q − 1

to find the error location numbers il, and correct the symbols at these posi-
tions by subtracting the corresponding error magnitudes.

(5.11) In order to avoid a profusion of subscripts and superscripts, it is
usual to introduce at this point the error location variablesXl = αil and the
error magnitude variables Yl = eil . Using this notation, we have

S0 = Y1 + Y2 + · · ·+ Yν

S1 = Y1X1 + Y2X2 + · · ·+ YνXν

...

S2t−1 = Y1X
2t−1
1 + Y2X

2t−1
2 + · · ·+ YνX

2t−1
ν

3 Finding errors and finding roots 47

This system of 2t non-linear equations are symmetric functions ofX1, X2, . . . , Xν

known as power-sum symmetric functions. Any method of solving these
equations is a decoding method for BCH codes. Note that if the error loca-
tion variables are known, the above system of equations is linear in the Yl,
and can be solved using regular techniques from linear algebra. The hard
part of the decoding process is to find the error locations.

(5.12) Example. Single error correction
If a single error occurred,

S0 = Y1

S1 = Y1X1

and hence X1 = S1/S0 and Y1 = S0. Hence if S1/S0 = αi, the error is at
location i and its value is S0.

As soon as the number of errors increases we need stronger methods to
solve the equations.

3 Finding errors and finding roots

In this section we will describe a very efficient algorithm to decode Reed
Solomon codes.

(5.13) Definition.
We define the syndrome polynomial as

S(X) =
2t−1∑
l=0

SlX
l,

the error locator polynomial as

Λ(X) =
ν∏
l=1

(1−XiX)

the error evaluator polynomial as

Ω(X) =
ν∑
k=1

Yk
∏
l 6=k

(1−XlX)

Where the Si, the Xl = αil and the Yl = eil are defined as in the previous
section.

48 Reed-Solomon Codes

(5.14) Note that by definition the roots the error-locator polynomial are
directly related to the error location variables:

Λ(X) = 0 ⇐⇒ X = α−ilfor some error location il

The polynomial itself is however unknown, and must be determined (hope-
fully in some efficient manner) from the syndrome polynomial. After which
we can determine the roots of Λ(X) to find the error locations.

(5.15) Although finding the roots of polynomials is in general a hard prob-
lem (over the reals there is no general solution for degree 5 of higher), finite
field polynomials have the advantage that we can find the roots by exhaus-
tive search over {0, 1, α, α2, . . . , αq−1}. Such a search is known as a Chien
search.

(5.16) After we have found the roots of Λ(X) we can determine the sizes of
the errors using the error evaluator polynomial. We will first recall formal
derivations in Fq For a polynomial a(X) =

∑s
i=0 aiX

i we define

a′(X) =
s∑
i=1

iaiX
i−1

Where we take i modulo the characteristic of Fq. For these formal deriva-
tives the same properties, like the Leibniz rule, hold as in the normal case.
We can now calculate that

Λ′(X) =
∑
k

−αik
∏
l 6=k

(1− αilX),

so by the definition of Ω(X)

Λ′(α−ik) = −αik
∏
l 6=k

(1− αil−ik) =
−αik
eik

Ω(α−ik)

This gives us the following expression for the error magnitudes

eik =
−αikΩ(α−ik)

Λ′(α−ik)
.

In view of this discussion, we now need to solve the following problem.

(5.17) Problem.
Given the syndrome polynomial S(X) determine the error locator polynomial Λ(X)
and the error evaluator polynomial Ω(X).

4 Berlekamps Algorithm 49

4 Berlekamps Algorithm

Consider the ring Fq[X]/(X2t). The polynomial 1− αjX is not divisible by
X and hence invertible. Its inverse is computed by chopping of the Taylor
expansion at X2t ≡ 0

1
1− αjX

≡
2t−1∑
l=0

(αjX)l mod X2t.

Using this identity we get

S(X) =
2t−1∑
l=0

SlX
l

=
n−1∑
l=0

ν∑
k=1

eik(αikX)l

=
ν∑
k=1

eik

(
2t−1∑
l=0

(αikX)l
)

≡
ν∑
k=1

eik
1− αikX

mod X2t.

We can relate Λ(X), S(X) and Ω(X) in the following way

Ω(X) = Λ(X)
ν∑
k=1

eik
1− αikX

≡ Λ(X)S(X) mod X2t.

To find Ω(X) and Λ(X) out of S(X) we will use the algorithm of Euclid. As
we saw in the appendix, this algorithm enables us to find the gcd elements
by division.
Suppose thus that a(X) and b(X) are polynomials of Fq then the algorithm
of Euclid supplies us with series ri(X), si(X) and ti(X) (i = 1, . . . , κ + 1)
such that

si(X)a(X) + ti(X)b(X) = ri(X) and deg ti(X) + deg ri−1(X) = deg a(X)

With r0(X) = a(X), rκ(X) = gcd(a(X), b(X)) and rκ+1(X) = 0.

(5.18) Theorem.
Suppose t(X) and r(X) are nonzero polynomials over Fq satisfying the following
conditions:

1. gcd(t(X), r(X)) = 1,

50 Reed-Solomon Codes

2. deg t(X) + deg r(X) < deg a(X),

3. t(X)b(X) = r(X) mod a(X).

Then there exists an index h ∈ N and a constant c ∈ Fq such that

t(X) = cth(X) and r(X) = crh(X).

Where the rh(X) and the th(X) are coming from the algorithm of Euclid.

Proof. First observe that the deg ri(X) strictly decreases when i increases.
By condition 2 we have that deg r < deg a and hence there is an index h
such that

deg rh(X) ≤ r(X) < deg rh−1(X).

From condition 3 we have that there is an s(X) ∈ Fq[X] such that

(1) s(X)a(X) + t(X)b(X) = r(X),

while from Euclid’s algorithm we have that

(2) sh(X)a(X) + th(X)b(X) = rh(X),

Multiplying equation (1) by th(X), equation (2) by t(X) and subtracting
the two results we obtain

(3) (t(X)sh(X)− th(X)s(X))a(X) = t(X)rh(X)− th(X)r(X),

Now we use the definition of h to get a bound on the degrees. By condition
2 we have

deg t(X)rh(X) = deg t(X) + deg rh(X) ≤ deg t(X) + deg r(X) < deg a(X),

and because of Euclids algorithm:

deg th(X)r(X) = deg th(X)+deg r(X) < deg th(X)+deg rh−1(X) = deg a(X).

So, the right hand side of equation (3) has a degree strictly smaller then
deg a(X), while the left hand side has degree ≥ deg a(X). Therefore both
sides must be zero and

(4) t(X)rh(X) = th(X)r(X).

Because deg th(X)+deg rh−1(X) = deg a(X), th 6= 0 and by condition 1 and
equation (4), r(X) divides rh(X) but it has the same or a higher degree so
it is a scalar multiple of rh(X). Dividing the previous equation by rh(X),
we see that t(X) is also a scalar multiple of th(X).

4 Berlekamps Algorithm 51

(5.19) Based on this theorem, we can find Λ(X) and Ω(X) because they
satisfy the necessary conditions if we identify

a(X) := X2t, b(X) := S(X), t(X) := Λ(X), r(X) := Ω(X)

The error evaluator polynomial has no zeros in common with the error
locator polynomial Λ(X) because

Ω(α−ik) = eik
∏
l 6=k

(1− αil−ik) 6= 0.

So gcd(Λ(X),Ω(X)) = 1. The degree of Λ(X) is equal to the number of
errors ν ≤ t. The degree of Ω(X) is smaller as it is the sum of polynomials
of degree ν − 1 and

deg Λ(X) + deg Ω(X) ≤ ν + ν − 1 ≤ 2t− 1 < degX2t

(5.20) The constant cmust be chosen such that cth(0) = Λ(0) = 1. We claim
that h is the unique index such that

deg rh < t ≤ deg rh−1.

Indeed, smaller values of i would result in a polynomial Ω(X) = crh(X)
whose degree is larger than t − 1. On the other hand we have for every
i > h

deg ti ≥ deg th+1 = deg a− deg rh > t

So then Λ(X) will have a degree larger than t.

If we put every thing together we get the following algorithm

(5.21) Algorithm. Berlekamp-Massy-Forney

1. Compute the syndrome polynomial S(X) out of the received word w(X).

2. Use the algorithm of Euclid for X2t and S(X) to find an index h such that
deg rh < t ≤ deg rh−1.

3. Define Λ(X) = th(X)/th(0) and Ω(X) = rh(X)/th(0). Find the ik such
that α−ik is a root of Λ(X). There have to be deg Λ(X) distinct roots other-
wise too many errors have occured and you must ask for retransmission.

4. Define

eik =
−αikΩ(α−ik)

Λ′(α−ik)
.

52 Reed-Solomon Codes

The corrected polynomial is

w(X)−
∑
k

eikX
ik .

(5.22) Aside.
Elwyn R. Berlekamp, professor at Berkeley was born in Dover, Ohio on
September 6, 1940. In the early 1970s, Dr. Berlekamp founded Cyclotomics,
Inc., a research and engineering firm specializing in the development and
implementation of high-performance error control systems for digital com-
munications and mass data storage. In 1984, Cyclotomics ”Bit-Serial” Reed

E.E. Berlykamp Solomon encoders were formally adopted as the NASA standard for deep
space communications. On the commercial side, all compact disk players
use Reed-Solomon Codes with Berlekamp decoding.

Chapter 6

Appendix: Finite fields

Finite fields are a very valuables source of combinatoric constructions, es-
pecially in coding theory and cryptography. In this first chapter we will
construct these fields and review their properties. This chapter is meant as
an overview and hence we only state results without proving them.

1 Prime fields

A field is an object that allows you to work with, like with the ordinary real
numbers: you can do addition, substraction, multiplication and division.
More formally we state

(6.1) Definition. Field
A field F is a set equipped with two maps

+ : F× F : (a, b) 7−→ a+ b

· : F× F : (a, b) 7−→ ab

such that

AA ∀a, b, c ∈ F : (a+ b) + c = a+ (b+ c) (associativity of the addition)

AC ∀a, b ∈ F : a+ b = b+ a (commutativity of the addition)

AN ∃0F ∈ F : ∀a ∈ F : 0F + a = a (0 is a neutral element for the addition)

AI ∀a ∈ F : ∃ − a ∈ F : a+ (−a) = 0F (the addition has inverses)

MA ∀a, b, c ∈ F : (ab)c = a(bc) (associativity of the multiplication)

MC ∀a, b ∈ F : ab = ba (commutativity of the multiplication)

54 Appendix: Finite fields

MN ∃1F 6= 0F ∈ F : ∀a ∈ F : 1Fa = a (1 is a neutral element for the
multiplication)

MI ∀a ∈ F \ {0F} : ∃ 1
a ∈ F : a 1

a = 1F (the multiplication has inverses)

D ∀a, b, c ∈ F : (a + b)c = ac + bc (distributivity between the addition
and multiplication)

If there is no confusion possible we will omit the subscript F from 0F and
1F.

(6.2) The standard examples are the number fields

• Q,

• R,

• C.

The aim of this chapter is now to find examples of fields that contain only
a finite number of elements.

(6.3) The starting point of our expedition is the ring of the integers, Z. Z
has most properties of a field, except that there are not inverses for the
multiplication. One can solve this problem by introducing fractions leading
us to the field of rational numbers Q. However in this way one obtains an
infinite field.
There is a second possibility to turn Z into a field. Although we cannot
always divide in Z, there is a division algorithm that given numbers a and
p produces a quotient q and a rest r such that

a = pq + r, 0 ≤ r < |p|

If we take a fixed p, the trick is now to treat numbers with the same rest
divided by p as the same, and define the addition and multiplication up to
the rests

(6.4) Definition.
We say that a, b ∈ Z are equivalent modulo p ∈ N if the differ only by a
multiple of p.

a ≡ b mod p ⇐⇒ p|a− b
The equivalence class of amodulo p is the set of integers that are equivalent
modulo p with a:

[a]p := {b ∈ Z|a ≡ b mod p}

1 Prime fields 55

The ring Zp := {[a]p|a ∈ Z} is the ring of rest classes modulo p together
with the obvious addition and multiplication.

[a]p + [b]p := [a+ b]p, [a]p · [b]p := [a · b]p.

For sake of simplicity we will abandon the notation [a]p in favor of a when
it is obvious what we mean.

One can check that for every number in {0, . . . , p − 1} there is a unique
equivalence class so one can identify the classes with those numbers. Ad-
dition and multiplication are a piece of cake: one computes it in the ring of
integers and then one takes the rest for division by p.
Computing inverses for the multiplication is more complicated. [b]p is the
inverse of [a]p if

[a]p[b]p = [1]p or ∃q ∈ Z : ab+ pq = 1.

For random a and p such a b can only exists if their greatest common divisor
is 1 and in that case one can compute this b by using the algorithm of Euclid.

(6.5) Algorithm. The algorithm of Euclid
Suppose a and b two integers, we compute their gcd and write it as a linear com-
bination of a and b.

1. Set r0 the biggest of a and b in absolute value, and r1 the other one. Put
i = 1 and define

t0 = 1, t1 = 0
s0 = 0, s1 = 1

2. If ri 6= 0 divide ri−1 by ri and call the quotient qi and the rest ri+1. Put also

ti+1 = −qiti + ti−1

si+1 = −qisi + si−1

increment i by 1 and repeat this until ri = 0. If this is the case ri−1 is the
greatest common divisor.

3. Because of the definition of the s and t we have for each j the identity

rj = tja+ sjb

Especially for j = i − 1 we have expressed the greatest common divisor in
terms of the original polynomials.

56 Appendix: Finite fields

Because inverses only exist if the gcd is 1, Zp will only be a field if p is a
prime in this case every a 6= [0]p will have gcd(a, p) = 1.

(6.6) Theorem.
Zp is a field if and only if p is a prime, in that case we also denote is by Fp.

(6.7) Exercise.
Write source code that enable you to add, subtract, multiply and divide in
Fp for a random prime p.

2 Polynomial rings

In the previous section we have already constructed a infinite number of
finite fields, but there are more. In order to find the others we will introduce
here polynomial rings over fields.

(6.8) Definition.
The ring of polynomials over a field F is

F[X] := {
n∑
i=0

aiX
i|0 ≤ n <∞, ai ∈ F}

Addition and multiplication are the usual like in R[X]. The degree of a
polynomial is the highest coefficient

(6.9) Example.
Adding polynomials over F2 is like adding normal polynomials keeping in
mind that 1 + 1 = 0 and hence

(X5 +X3 +X + 1) + (X4 +X3 + 1) = X5 +X4 + (1 + 1)X3 +X + (1 + 1)

= X5 +X4 +X.

The product of two polynomials is also obvious

(X2 + 1)(X3 +X + 1) = (X5 +X3 +X2) + (X3 +X + 1)

= X5 +X2 +X + 1

This structure is not a field because we still don’t have inverses but we have
overcome the problem of the zero devisors because the degree (the highest
non-zero power of X) of the product of two polynomials is the sum of the

3 Quotient rings 57

degrees of those two polynomials. Nevertheless it is an important structure
in the way that all possible finite fields are derived from such rings.
Although we don’t have inverses in F[X], we can divide polynomials with
the division algorithm. Given two polynomials a(X), b(X) we can compute
the quotient q(X) and rest r(X) such that

a(X) = b(X)q(X) + r(X) and degr(X) < degb(X)

f.i. in F2

X4 +X2 +X + 1 = (X2 +X + 1)(X2 +X + 1) +X

Just as in normal division theory with the natural numbers, we can define
prime (or more correct irreducible) polynomials which have no nontrivial
divisors. Like with ordinary numbers we can decompose every polynomial
in his prime components.

X4 +X2 +X + 1 = (X + 1)(X3 +X2 + 1), (in F2).

We also can define te concept op greatest common divisor (gcd) and least
common multiple (lcm) of two or more polynomials. An important prop-
erty of the gcd is that we can express gcd(a(X), b(X)) as a combination of
multiples of a(X) and b(X). For this we again use the algorithm of Euclid,
adapted to polynomials. The lcm on the other hand can be calculated by
dividing the product of the two polynomials by its gcd.

3 Quotient rings

As we have seen a polynomial ring behaves more or less like the ring of
integers, Z. Therefore it can be used in the same way to construct new
finite fields.
Consider a polynomial g(X) of degree n in Fp[X] Two polynomials a(X)
and b(X) are said to be equivalent modulo g(X) if they have the same rest
if divided by g(X) or equivalently if their difference divides g(X). We write

a(X) = b(X) mod g(X)

We construct a new ring by looking again only up to equivalence modulo
g(X). We consider a new ring F2[X]/(g) which consists of elements

[a(X)]g := {b(X) ∈ F2[X]|a(X) = b(X) mod g(X)}

the addition and multiplication are defined as

[a(X)]g + [b(X)]g = [a(X) + b(X)]g, [a(X)]g · [b(X)]g = [a(X)b(X)]g

58 Appendix: Finite fields

Because rests always have a lower degree than g, every polynomial is equiv-
alent with one of degree smaller than n. Therefore there are only pn ele-
ments in this ring corresponding to all possible rests. The easiest way to
work in this ring is to work only with the rests and each time you multiply
you must calculate the rest of the product divided by g.
It is not necessarely true that this ring has no zero divisors because we
could have the situation that the product of two rests gives us a multiple of
g(X) f.i.

[X2]X4 [X3]X4 = [X5]X4 = [0]X4

This is only possible when g(X) is not a prime polynomial because if g(X)
were prime and g(X)|a(X)b(X) then a(X) or b(X) must contain g(X) in its
prime decomposition and thus its rest will be zero. Computing inverses is
also done by using the algorithm of Euclid for polynomials.
For sake of simplicity we will drop the notation [·]g and denote [X]g by a
greek letter f.i. ξ. We easily have that [a(X)]g := a(ξ).

(6.10) Example.
If we take g(X) := X2 + X + 1 the field F2[X]/(g(X)) will consist of four
elements: 0, 1, ξ, ξ + 1 with the following tables for multiplication and
addition:

+ 0 1 ξ ξ + 1
0 0 1 ξ ξ + 1
1 1 0 ξ + 1 ξ

ξ ξ ξ + 1 0 1
ξ + 1 ξ + 1 ξ 1 0

· 1 ξ ξ + 1
1 1 ξ ξ + 1
ξ ξ ξ + 1 1

ξ + 1 ξ + 1 1 ξ

(6.11) Example.
If we take g(X) := X2 +1 then F2[X]/(g(X)) is not a field anymore because
X2 + 1 = (X + 1)2. It will consist again of four elements: 0, 1, ξ, ξ + 1, but
ξ + 1 won’t be invertible because (ξ + 1)2 = 0.

· 1 ξ ξ + 1
1 1 ξ ξ + 1
ξ ξ 1 ξ + 1

ξ + 1 ξ + 1 ξ + 1 0

The number of elements in a finite field will be exactly pn with n the degree
of the prime polynomial. For p = 2, n = 2 we just have one irreducible
polynomial: X2 +X + 1. For n bigger this is not true anymore. If n is 3 we

4 Galois fields 59

have exactly 2 irreducibles:

X3 +X + 1, X3 +X2 + 1.

This does not mean that there are two different kinds of fields with 8 ele-
ments. Mathematically F2[X]/(X3 + X + 1) and F2[X]/(X3 + X2 + 1) are
isomorphic. This means that we can identify the elements of both fields. To
put it more clearly take ξ := [X]X3+X+1 and η := [X]X3+X2+1 than we see
that

(ξ + 1)3 + (ξ + 1)2 + 1 = ξ3 + ξ2 + ξ + 1 + ξ2 + 1 + 1

= ξ3 + ξ + 1 = 0

So ξ + 1 fulfills the same equation in the first field as η in the second field.
Via this method we can identify all the elements of the two fields with each
other:

0 7−→ 0 ξ2 7−→ η2 + 1
1 7−→ 1 ξ2 + 1 7−→ η2

ξ 7−→ η + 1 ξ2 + ξ 7−→ η2 + η
ξ + 1 7−→ η ξ2 + ξ + 1 7−→ η2 + η + 1

One can prove that for every n there exists at least 1 irreducible polynomial
of degree n and that if there exists more of them they all induce isomorphic
fields.

(6.12) Theorem.
For every prime power q := pn there exists a unique finite field with q elements,
this is called the Galois field with q elements and is denoted by Fq.

(6.13) Aside.
Evariste Galois was a mathematican, born in Bourg-la-Reine, France. He

E. Galois (1811-32)was educated privately and at the Collège Royal de Louis-le-Grand. De-
spite mathematical ability he failed the entrance for the Ecole Polytech-
nique to study maths, and settled for the Ecole normale Supérieure in 1829
to train as a teacher, but was expelled in 1830 for republican sympathies.
He engaged in political agitation, was imprisoned twice, and was killed in
a duel aged 21. His mathematical reputation rests on original genius in the
branch of higher algebra known as group theory.

4 Galois fields

We will now investigate some properties of those fields. In what follows
we will set q equal to pn.

60 Appendix: Finite fields

(6.14) Theorem.
for a finite field Fq, F∗q := Fq \ {0} will be a commutative cyclic group with q − 1
elements.

This theorem states that there exists an element α ∈ F∗q such that every
other element of F∗q can be expressed as a power of α. For example in F8

we can take ξ itself:

[0 = 0] ξ2 = ξ2

1 = ξ0 ξ2 + 1 = ξ6

ξ = ξ1 ξ2 + ξ = ξ4

ξ = ξ3 ξ2 + ξ + 1 = ξ5

Here we used all the powers of ξ until the sixth, if we compute the seventh
power we will see that its again 1 so we have for every element in F∗8 an
infinite number of possibilities to express it as a power of ξ:

ξ + 1 = ξ3 = ξ10 = ξ17 = . . .

One can also take η because ξ3 = η thus ξ = ξ15 = η5 and so f.i.

ξ2 + ξ + 1 = ξ5 = η25 = η4.

However it is not true that one can always take the generator element of
the galois field. Consider F16

∼= F2[X]/(X4 +X3 +X2 +X + 1) and take ξ
to be the equivalence class of X . One can compute that

ξ5 = ξ(ξ3 + ξ2 + ξ + 1)

= (ξ3 + ξ2 + ξ + 1) + ξ3 + ξ2 + ξ

= 1.

In general there is no algorithm to find a generator of the cyclic group, so
one has to do some trial and error.
Consider an element α ∈ Fq, with q = 2n. A polynomial a(X) ∈ F2[X]
such that a(α) = 0 is called a characteristic polynomial for α, the characteris-
tic polynomial of least degree is called the minimal polynomial of α. One can
show that the minimal polynomial divides every other characteristic poly-
nomial and that it is irreducible. F.i. In F4 s(X) = X3 + 1 is a characteristic
polynomial for ξ because ξ3 = (ξ + 1)ξ = ξ + 1 + ξ = 1 but it is not its
minimal polynomial since

X3 + 1 = (X + 1)(X2 +X + 1) and ξ2 + ξ + 1 = 0.

The degree of an element of a finite field is defined as the degree of its
minimal polynomial. Not all the elements of a finite field have the same

4 Galois fields 61

degree. In F16 = F2[X]/(X4 + X + 1) ξ obviously has degree 4 but for ξ5

we have that

ξ10 = ξ2(ξ + 1)2 = ξ4 + ξ2 = ξ + 1 + ξ2 = ξ(ξ + 1) + 1 = ξ5 + 1.

So ξ5 has minimal polynomialX2+X+1. This implies also that F16 contains
a subfield generated by ξ5. This subfield contains the 4 elements 0, 1, ξ5

and ξ5 + 1 and it is isomorphic to F4. Although F16 contains F4 it does not
contain F8. This is because if it would there would exist an element α such
that α7 = 1 suppose that this element can be written as ξj then ξ7j = 1 = ξ15

so 15 must divide 7j and thus also 15|j and α = 1 which is a contradiction.

(6.15) Theorem.
Generally one can embed Fpm in Fpn if and only if m|n, moreover there is only one
subfield of Fpn isomorphic to Fpm . If ξ is a generator of F∗pn and then F∗pm will be
generated by

ξ
pn−1
pm−1 .

Some elements of a finite field have the same minimal polynomial, in F4

e.g. ξ and ξ + 1 both satisfy X2 +X + 1, ξ by definition, ξ + 1 because

(ξ + 1)2 + ξ + 1 + 1 = ξ2 + 1 + ξ + 1 = ξ + 1 + 1 + ξ + 1.

One can prove that every minimal polynomial of an element in a finite field
has as many roots as it’s degree. In F8 for example the minimal polynomial
of ξ is X3 +X + 1, but one can compute also that but ξ2 and ξ4 are roots of
the same polynomial.

(ξ2)3 + ξ2 + 1 = (ξ + 1)2 + ξ2 + 1 = ξ2 + 1 + ξ2 + 1 = 0

(ξ4)3 + ξ4 + 1 = (ξ + 1)4 + ξ4 + 1 = ξ4 + 1 + ξ4 + 1 = 0.

this is also a general rule if α is a root of a polynomial then αp, αp
2
, αp

3
, . . .

will be also roots. Take care some, of those roots will be the same as previ-
ous ones. In F8 We have that ξ8 = ξ, so there are not any new roots apart
from ξ, ξ2 and ξ4.
Because F∗q is a cyclic group of q − 1 elements, we have that α ∈ F∗q

∀α ∈ F∗q : αq−1 = 1

This implies that every element of Fq, including the zero is a root of the
polynomial Xq −X . So all the minimal polynomials divide Xq +X so that
Xq +X is the product of all minimal polynomials of elements in Fq.

X9 −X = X︸︷︷︸
0

(X + 1)︸ ︷︷ ︸
1

(X3 +X + 1)︸ ︷︷ ︸
ξ,ξ2,ξ4

(X3 +X2 + 1)︸ ︷︷ ︸
ξ3,ξ5,ξ6

62 Appendix: Finite fields

As we considered polynomials over the prime field Fp, we can also consider
polynomials over the field Fq. Most of the properties of these polynomials
are the same as those of Fp[X]. We again have a division algorithm and one
can also define irreducible polynomials, and we have a unique factorization
theorem. Notify however that a polynomial which is irreducible over F2

might not be irreducible for a bigger field. In F4

X2 +X + 1 = (X + ξ)(X + ξ + 1).

In general when α is a root of a polynomial a(X) over a field then X − α
divides a(X). To calculate the quotient a(X)/(X + α) one uses the method
of Horner.

(6.16) Example.
Compute the quotient of f(X) := X4 + ξX3 + X2 + (ξ + 1)X + ξ divided
by X − ξ over F4

1 ξ 1 ξ + 1 ξ
+ ξ 0 ξ ξ

= 1 0 1 1 0

In the upper line we put the coefficients of f(X). The third line is the sum
of the two upper lines and the kth element of the second line is ξ times the
(k − 1)th element of the third line. The coefficients of the quotient are all
but the last element of the third line, so here the quotient is X3 +X + 1.

One could also try to produce fields taking polynomials over Fq but those
fields will be isomorphic to the one we already found. For instance if we
take the polynomial X2 +X+ ξ over F4 and represent α = [X]X2+X+ξ than
we can identify the new field with F16 because

α4 = (α+ ξ)2

= α2 + ξ2

= α2 + ξ + 1

= α2 + α2 + α+ 1
= α+ 1

So α satisfies the polynomial X4 +X + 1 over F2 and so we can identify it
with an element of F16.

(6.17) Exercise.

4 Galois fields 63

• Write source code that can add, multiply and divide over a finite field
Fp[X]/(g(X)) if p and g(X) are given.

• Write source code that can find a generator element of Fp[X]/(g(X))∗, ·
and produces a conversion table between the additive and the expo-
nential notation of the finite field.

• Write source code that generates prime polynomials over Fp[X]

Index

j-th syndrome, 46
n-code, 3

base, 14
Berlekamp-Massy-Forney, 51
binary, 3

characteristic polynomial, 60
Chien search, 48
code words, 1
cyclic code, 37
cyclic shift, 37

distance isomorphic, 12
dual code, 19

equivalent, 11
error, 3
error evaluator polynomial, 47
error locator polynomial, 47

Galois field with q elements, 59
Gauss-Jordan elimination, 17
generating, 14
generator matrix, 15
generator polynomial, 39

Hamming code, 26
Hamming distance, 3

ideal, 39

linear [n,m, d]-code, 13
linear dependent, 14
linearly equivalent, 16
linearly independent, 14

minimal polynomial, 60

normal position, 17

orthogonal, 18
orthogonal code, 19
orthogonal complement, 18

parity, 9
positional permutation, 10
primitive element, 43

Reed-Solomon code, 43

sphere packing boundary, 23
symbolic permutations, 11
syndrome, 19
syndrome polynomial, 47
systematic code, 17

ternary Golay code, 29

Contents

1 Error correcting codes 1
1 Motivation . 1
2 Definitions . 4
3 Examples . 6

3.1 Equivalence of codes 10

2 Linear codes 13
1 Definition and examples 13
2 Basis and generator matrix 14
3 The parity check matrix 18

3 Perfect codes 23
1 Introduction . 23
2 Repetition codes . 25
3 Hamming codes . 26
4 The ternary Golay-code 29
5 Binary Golay-codes . 31
6 Fundamental theorems . 35

4 Cyclic Codes 37
1 Introduction . 37
2 Generator polynomial and check polynomial 39

5 Reed-Solomon Codes 43
1 Definition . 43
2 Syndromes for Reed Solomon codes 45
3 Finding errors and finding roots 47
4 Berlekamps Algorithm . 49

6 Appendix: Finite fields 53
1 Prime fields . 53
2 Polynomial rings . 56
3 Quotient rings . 57
4 Galois fields . 59

Bibliography i

Index i

