
4
Quivers

Representations of quivers have been studied intensively and there are many
nice references such as [GR92, Sch14, CB99, CB92, Bri12]. The aim of this
chapter is to view these classical results from the perspective of A∞-categories.
We will work out a couple of examples for which we can classify all repre-
sentations. Each of these examples can be interpreted geometrically in two
different ways. This will give us a first glimpse of homological mirror symme-
try.

4.1 Representations of Quivers

4.1.1 The Path Algebra

Definition 4.1 A quiver Q is an oriented graph. We denote the set of vertices
by Q0, the set of arrows by Q1 and the maps h, t : Q1 → Q0 assign to each
arrow its head and tail.

A nontrivial path p of length k is a sequence of arrows a1 · · · ak such that
t(ai) = h(ai+1). A trivial path is just a vertex v ∈ Q0. A path a1 · · · ak is called
cyclic if h(a1) = t(ak) and the equivalence class of a cyclic path under cyclic
permutation is called an oriented cycle.

Definition 4.2 The path algebra CQ is a vector space spanned by all paths.
The product of two paths is their concatenation if possible and 0 otherwise.
Paths are concatenated from right to left: pq = p�� q�� .

The trivial paths corresponding to the vertices v are a complete set of or-
thogonal idempotents:

∀ v,w ∈ Q0 we have vw =


v, v = w,

0, v � w
and

�

v∈Q0

v = 1.
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They span a semisimple subalgebra, which we will denote by CQ0. All non-
trivial paths span a two-sided ideal J = �a | a ∈ Q1� � CQ.

Example 4.3 If we take for example the quivers , �� and �� then the
corresponding path algebras are C, C[X] and the nonstrictly upper-triangular
(2 × 2)-matrices

�
C C
0 C

�
. A quiver with one vertex and k loops gives rise to the

free algebra C�X1, . . . , Xk�.
Remark 4.4 The path algebra can also be considered as a category CQ. The
objects are the vertices, the hom-space between two vertices is CQ(v,w) =
wCQv and the vertex idempotents are the identities �v = v ∈ vCQv.

4.1.2 Simples and Projectives

We will denote the categories of finite-dimensional, finitely generated and
all right CQ-modules by modQ, ModQ and MODQ respectively and their A∞-
versions by mod• Q, Mod• Q and MOD• Q. There are two important sets of right
modules parametrized by Q0:

• the basic projectives Pv := vCQ, which can also be viewed as contravariant
functors Pv : CQ→ VECT(C) with Pv(w) = vCQw and Pv(a)x = xa;
• the basic simples S v := vCQ/J, which can also be viewed as contravariant

functors Sv : CQ→ VECT(C) with Sv(w) = δvwC and Sv(a) = 0.

Because the former are projective there are no nontrivial extensions between
them so

ExtiCQ(Pv, Pw) =


wCQv, i = 0,

0, i > 0.

This implies that the full subcategory P• ⊂ D MOD• Q containing the basic pro-
jectives is isomorphic to CQ viewed as an A∞-category concentrated in degree
0 with trivial higher products.

The simple module S v has a projective resolution
�

h(a)=v

Pt(a)
a·−→ Pv.

From this we can easily calculate

ExtiCQ(S v, S w) =



δvwC, i = 0,

C⊕#{a : v←w}, i = 1,

0, i > 1.
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If we put S =
�

v∈Q0
S v then Ext•CQ(S , S ) is a graded vector space spanned by

a degree 0 element v∗ = �S v for each vertex v ∈ Q0 and a degree 1 element a∗

for each arrow a ∈ Q1. The product structure between the degree 0 and degree
1 elements is reversed, so we can consider v∗ and a∗ as vertices and arrows
of the opposite quiver. The product of two degree 1 elements is zero because
there are no degree 2 elements. This gives the following Ext-ring:

Ext•CQ(S , S ) =
CQop

�a∗b∗ | a∗b∗ ∈ Qop
1 �
.

In analogy to the dual numbers (Example 2.34), we will call this algebra the
dual quiver algebra and denote it by ΛQ. Because there are no degree 2 ele-
ments the higher products on ΛQ are all zero. This implies that the full subcat-
egory S• ⊂ D MOD• Q of all basic simples is strictly isomorphic to ΛQ viewed
as an A∞-category with trivial higher products.

Theorem 4.5 Let Q be any quiver; then we have the following inclusions of
A∞-categories:

D S• ⊂ D mod• Q ⊂ D P• .

When Q has no oriented cycles these inclusions are all equivalences.

Sketch of the proof The first inclusion is obvious because the simple modules
are one-dimensional. The second inclusion follows from the fact that every
module M has a standard projective resolution of the form

�
a∈Q0

Mh(a) ⊗C Pt(a)
d ��

�
v∈Q0

Mv ⊗C Pv

with d(
�

a ma ⊗ xa) =
�

a maa ⊗ xa −ma ⊗ axa. If M is finite-dimensional then
both terms are finite direct sums of projectives, so the resolution is a twisted
complex over P•.

When Q has no oriented cycles then the basic projectives are finite-dimensional
because there are only a finite number of paths. Furthermore, the only simple
modules are the S v, so CQ and hence all the basic projectives are generated by
the basic simples. This implies that D P• ⊂ D S•. �

Remark 4.6 If Q has oriented cycles then all three categories are differ-
ent: D S• will only contain the nilpotent modules (i.e. those that factor through
CQ/Jk for some k ≥ 1), while D mod• Q does not contain those Pv for which v
sits in an oriented cycle.
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4.1.3 Twisted Complexes

To move easily between the three categories D mod• Q, D P•, D S•, we will use
the notion of quiver representations.

Definition 4.7 A dimension vector of a quiver Q is a map α : Q0 → N and
we define the size of α as |α| = �v αv. An α-dimensional representation of Q
is an element

ρ ∈ Rep(Q,α) :=
�

a∈Q1

Matαh(a)×αt(a) (C).

A representation ρ can be interpreted in three different ways:

• as a right CQ-module Mρ : CQ → vect(C) that maps the object v to the
vector space Mρ(v) := Cαv and the morphism a ∈ Q1 to the linear map
Mρ(a) : Cαt(a) → Cαh(a) : x �→ xρ(a), where x is considered as a row vector;
• as a twisted complex over P• which comes from the standard projective res-

olution ofMρ:

Pρ =
�

a∈Q1

Pt(a)⊕αh(a)
ρ(a)−a−→

�

v∈Q0

P⊕αv
v ;

• as a twisted complex over S•:

S ρ :=


�

S ⊕αv
v , δ =

�

a∈Q0

ρ(a)�a∗
 ,

where ρ(a)�a∗ should be seen as a matrix block between S ⊕αh(a)

h(a) and S ⊕αt(a)

t(a) .
The Maurer–Cartan equation is trivially satisfied because all products be-
tween the a∗’s are zero, but S ρ is not necessarily a twisted complex because
δ might not be lower triangular. This is only the case whenMρ is nilpotent.

Lemma 4.8 IfMρ is nilpotent then S ρ �Mρ � Pρ ∈ D P•.
Sketch of the proof We can transform S ρ into Pρ by using the standard res-
olution of the vertex simples; Pρ can be transformed into Mρ by taking the
cokernel. �

Theorem 4.9 Every object in D S• is isomorphic to a direct sum of shifts of
S ρ’s.

Sketch of the proof We first show that every (M, δ) is isomorphic to a com-
plex without v∗’s in δ by induction on the number of summands in M. If there
is only one summand then δ = 0, so the statement is trivially true.

Take a twisted complex (M, δ) and look at the bottom row of δ. By the in-
duction hypothesis we may assume that the other rows of δ only contain dual
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arrows. After a conjugation (see Remark 3.31) we can ensure that at most one
entry of the bottom row is a vertex v∗ = �S v .

This vertex connects two summands S v[i + 1]
�−→ S v[i]. If (M, δ) is not

a direct sum of two smaller complexes, all other summands are connected to
S v[i+1] or S v[i] via an entry containing dual arrows, but not to both for reasons
of degree. The entries leaving S v[i] or arriving in S v[i + 1] are zero because
δ2 = 0. Hence, up to a shift the complex looks like

N1[1]δ1 �� S v[1] � ��r�� S v N2 δ2��
s�� .

This complex is quasi-isomorphic to (Mred, δred) = (N1 ⊕N2[1], δ1 + δ2) via the
following pair of quasi-isomorphisms:

(Mred, δred)

φ

��

N1[1]δ1 ��

�

��

N2 δ2��

�

��

−s

��
(M, δ)

φ†

��

N1[1]δ1 ��

�

��

S v[1] � ��r�� S v

−r

��

N2 δ2��
s��

�

��
(Mred, δred) N1[1]δ1 �� N2 δ2��

.

If a twisted complex (M, δ) has only dual arrows in δ then we can write it as
a direct sum of complexes for which all summands are shifted by the same
degree. Such a twisted complex is of the form S ρ[i] with ρ(a) the matrix of
coefficients of a∗. �

Remark 4.10 More generally one can prove that every object in D MOD• Q
is isomorphic to a direct sum of shifts of modules (a complex with zero dif-
ferential). This is a well-known theorem in representation theory that follows
from the fact that CQ is a hereditary algebra: the submodules of projective
CQ-modules are also projective.

4.2 Strings and Bands

Using the formalism developed above we will now look at three special quiv-
ers and interpret their representation theory geometrically as the intersection
theory of lines on a surface. For most quivers it is impossible to classify all
indecomposable representations. Only if the underlying graph is a Dynkin di-
agram or an extended Dynkin diagram can one get a complete classification.
The three quivers we will examine are of this type.
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4.2.1 The Linear Quiver

Let Q = Ln be the linear quiver with n vertices:

a1an−1 . . . v1v2· · ·vn ·

We denote the vertices from left to right by v1, . . . , vn and the arrows by a1, . . . , an−1.
The vertex simples will be denoted by S i and the arrows in the dual quiver by
αi = a∗i :

α1αn−1
S 1.S 2S n−1S n

For each pair 1 ≤ i ≤ j ≤ n, there is a twisted complex

S i j = (S i ⊕ · · · ⊕ S j, δ = αi + · · · + α j−1),

which corresponds to a module that maps the vertices vi, . . . , v j to a one-
dimensional vector space and the arrows between them to a nonzero map, or a
representation ρi j with dimension vector �i j = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) and
ρi j(ak) = 1 if i ≤ k < j.

Theorem 4.11 All indecomposable objects in D S• are isomorphic to shifts of
the S i j.

Sketch of the proof Theorem 4.9 tells us that every indecomposable object in
D S• is a shift of an S ρ. Because there is only one αi leaving each dual vertex
and one arriving, an indecomposable S ρ must look like

�
S ⊕mi

i ⊕ S ⊕mi+1
i+1 ⊕ · · · ⊕ S ⊕m j

j , δ = Biαi + · · · + Bj−1α j−1

�
,

where Bj is an (mj × mj+1)-matrix with coefficients in C.
Decompose Cmk as �Bk ⊕ R. If R � 0 then

· · · ⊕ Bk−2Bk−1R ⊗ S k−2 ⊕ Bk−1R ⊗ S k−1 ⊕ R ⊗ S k

is a direct summand, so Bk must be surjective. Similarly, Bk must be injective
because otherwise

Ker Bk ⊗ S k−1 ⊕ B−1
k+1 Ker Bk ⊗ S k ⊕ B−1

k+2B−1
k+1 Ker Bk ⊗ S k+1 ⊕ · · ·

is a summand. Therefore, all Bk are invertible and we can conjugate (see Re-
mark 3.31) them into identity matrices. If each matrix is of size r×r, the twisted
complex decomposes into r subcomplexes of the form S i j. �
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Now that we have established the indecomposable objects, the next step is
to study the morphisms between them. From the definition we can deduce that

Tw S•(S i j, S kl) =
�

i≤u≤ j
k≤u≤l

C�S u ⊕
�

i≤v+1≤ j
k≤v≤l

Cαv

with dαv = 0 and d�S u = αu−1 − αu, unless αu−1 or αu are not present in
Tw S•(S i j, S kl). If that is the case, these terms are deleted from the sum. If we
calculate the homology we get the following table.

Lemma 4.12 Let S i j, S kl be twisted complexes as above.

Case DS0(S i j, S kl) DS1(S i j, S kl)

i − 1 ≤ k − 1 < j ≤ l Cι 0
k − 1 < i − 1 ≤ l < j 0 Cγ

Otherwise 0 0

The degree 0 element is ι =
�

u �S u where the sum runs over all S u in the
overlap. The degree 1 element is γ = αv (any of them works as they are all
equal up to homology).

This rule can be interpreted in a geometrical way by viewing the twisted
complexes as lines in a polygon.

Definition 4.13 Consider the regular (n+ 1)-gon with corners p0, . . . , pn (we
number the corners anticlockwise and assume the line pn p0 is the horizontal
one at the bottom of the polygon).

A graded line segment is a pair L = (−−−→pi p j, θ) consisting of an oriented line
segment that connects two corners of the polygon and a phase θ ∈ R. This is a
number such that θ mod 2π is equal to the angle between the X-axis and −−−→pi p j.

Every −−−→pi p j can be given different phases that all differ by a multiple of 2π.
If we reverse the direction of a line segment we have to add π to the phase, so
therefore we introduce the notation L[k] := (−−−→p j pi, θ + kπ). Every graded line
segment is a shift of one of the

Li j := (−−−−−→pi−1 p j, θ) with θ ∈ (0, 2π].
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p0

p1

p2

p3p4

p5

p6

p7

L11

L22

L33

L44

L55

L66

L77

α1

α2

α3
α4

α5

α6

L17

ι

γ

L36 L25

If we interpret the graded line segment Li j[k] as the representation S i j[k], we
see that the basic simples S i = S ii form the edges of the polygon except for
the horizontal edge, which corresponds to S 17 (note that the latter is oriented
differently). There is a degree 1 morphism (extension) between two simples if
the line segments touch. From this point of view we can see the corresponding
morphisms αi as angles of the polygon.

This also holds for other representations. Between S 25 and S 36 there are
two morphisms: a degree 0 morphism ι : S 25 → S 36 and a degree 1 morphism
γ : S 36 → S 25. If we look at the picture we see that the line segments L25 and
L36 intersect in the interior of the polygon and there are two angles: one in
every direction.

Observation 4.14 (Morphisms are angles) Let L1, L2 be two twisted com-
plexes corresponding to graded line segments (L1, θ1) and (L2, θ2). If the un-
derlying line segments are different then we have D S•(L1, L2) � 0 if and only
if there is a positive angle β ∈ [0, π) inside the polygon from L1 to L2. In that
case, the morphism space is generated by one morphism of degree

β − (θ2 − θ1)
π

.

The degree measures the difference between the turning angle and the phase
shift.

This interpretation is also useful for constructing cones. If we look again at
the polygon above we notice the following:

• The cone of αi : S i+1 → S i is S ii+1, which can be interpreted as the line
segment formed by stitching the line segments of S i and S i+1 together using
the angle αi and straightening it.
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• The cone of γ : S 36 → S 25 is
S 2 ⊕ S 3 ⊕ S 4 ⊕ S 5��������������������������������������

S 25

⊕ S 3 ⊕ S 4 ⊕ S 5 ⊕ S 6��������������������������������������
S 36

,

α3 + α4 + α5����������������������
S 25

+α4 + α5 + α6����������������������
S 36

+ α3����
γ



which we can reorder as
S 2 ⊕ · · · ⊕ S 6������������������������

S 26

⊕ S 3 ⊕ S 4 ⊕ S 5������������������������
S 35

,α3 + · · · + α6������������������������
S 26

+α4 + α5��������
S 35

+ α3����
0∈D S•(S 35,S 26)



� S 26 ⊕ S 35.

Geometrically we used the angle γ to stitch the pieces of the line segments
together differently.
• If we take the cone over ι : S 25 → S 36 viewed as a degree 1 morphism
ι : S 25[1]→ S 36 we get

S 2[1] ⊕ · · · ⊕ S 5[1]����������������������������������������
S 25[1]

⊕ S 3 ⊕ · · · ⊕ S 6������������������������
S 36

,

−α3 − α4 − α5����������������������������
S 25[1]

+α4 + α5 + α6����������������������
S 36

+�S 3 + �S 4 + �S 5��������������������������������
ι



which, using the method in the proof of Theorem 4.9, can be seen as S 2[1]⊕
S 6. Again we stitched the segments together using the angle.

Observation 4.15 (Cones are stitches) Assume that L1, L2 are two graded
line segments with phases in (0, 2π) and α is an angle that corresponds to a
morphism of degree 1. Taking the cone of α can be seen as the line segment
obtained by stitching the two line segments over α.

Cone→ ≡

Cone→ ≡
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The final part of this geometrical interpretation is the products. It is easy to
check that boundary angles that sit on the same corner of the polygon add up
if we multiply them, but what about the internal angles? Let us look at two
examples again.

• Take the twisted complexes A = S 36, B = S 25, X = S 47 and Y = S 35.
There is a degree 0 morphism ιAX : S 36 → S 47 and a degree 1 morphism
γXB : S 47 → S 25. Their composition is the degree 1 morphism γAB : S 36 →
S 25. If we look in the picture we see that ιAX , γXB are the internal angles of
a triangle and γAB the external angle at the third corner.
• The product of ιBY : S 25 → S 35 and ιYA : S 35 → S 36 is ιBA : S 25 → S 36,

which is the outer angle of the third corner of the triangle with inner angles
ιBY and ιYA.

γXB

ιAX

γAB
A

B

X

ιYAιBY

ιBA

A B

Y

So the product sees triangles. This observation generalizes even to higher prod-
ucts. If we have an internal n-gon and we want to take a higher product of n−1
internal angles, then we can rewrite this as an (n − 2)-ary product by taking
a cone over one of the morphisms (see Lemma 3.42). The cone stitches two
sides together to form an (n − 2)-gon. Iterating this procedure we end up with
a triangle that we can interpret using the binary product rule.

α1

α2

α3
ᾱ4

µ(α1,α2,α3) =

α�1
α�3

ᾱ4

µ(α�1,α
�
3) = ±ᾱ4

Observation 4.16 (Polygons induce products) If L1, . . . ,Lk are line segments
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that bound a subpolygon then the higher product of all the connecting internal
morphisms except one is the outer angle morphism at the remaining corner:

µ(α1, . . . ,αk−1) = ±ᾱk.

The sign depends on the degrees of the morphisms.

Remark 4.17 Take care: not every nonzero product in D S• comes from a
polygon, because sometimes these polygons can be degenerate (e.g. if three
line segments run through the same point, or if some of the line segments are
the same).

Observation 4.18 The A∞-category D S• describes the intersection theory of
line segments in a polygon.

Remark 4.19 Making this observation rigorous is not an easy task. One way
to do this is to work with precategories. Define a precategory whose

• transversal sequences are graded line segments for which all pairwise inter-
section points are different,
• hom-spaces are graded C-linear vector spaces spanned by the intersection

angles,
• the only nonzero products are given by the rule in Observation 4.16.

Unfortunately, this precategory has no isomorphisms. To solve this problem we
can add graded curves. These are pairs L = (γ : [0, 1] → R2, θ : [0, 1] → R)
where γ is a smooth embedding of [0, 1] into the polygon that connects two
different corners and θ(x) is the angle between dγ

dt (x) and the X-axis. In this
precategory the angles

are quasi-isomorphisms and therefore the corresponding minimal model Polygon•
n+1

is a precategory with enough isomorphisms. If we categorify this precategory
we get an equivalence

D S• ∞= Polygon•n+1 .

4.2.2 The Kronecker Quiver

The second quiver we will have a look at is the Kronecker quiver Q = K.
It consists of two vertices v0, v1 connected by two arrows a0, a1 in the same
direction.
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a0

a1

v0v1

The category P• contains the two projective modules Pi = viCQ and the
category S• contains two simple modules S i = viCQ/�a0, a1�. The Ext-ring of
those two simples is ΛQ. Because there are no paths of length 2, this algebra is
isomorphic to CQop � CQ. So the categories S• and P• look the same but they
have different gradings. In P• all morphisms have degree 0 but in S• the dual
arrows αi = a∗i have degree 1.

Theorem 4.20 Every indecomposable object in D S• is isomorphic to a shift
of the following complexes:

(i) S (i,w) is a linear subcomplex of the infinite string below, which starts
with S i on the right and has a total of w terms.

· · · S 1

S (0,4)

α1�� α0 �� S 0 S 1
α1�� α0 �� S 0 S 1

α1�� α0 �� · · ·

(ii) B(λ, n) = S ⊕n
0
�� α0�n+α1 J(λ,n)

S ⊕n
1 , where J(λ, n) is a Jordan

block of size n with eigenvalue λ ∈ C∗.

Sketch of the proof Suppose (M, δ) is an indecomposable twisted complex.
Using Theorem 4.9, we can assume that the twisted complex is of the form

�
S 0[k]⊕n ⊕ S 1[k]⊕m, B0α0 + B1α1

�
,

where B0, B1 are two (m × n)-matrices. Up to isomorphism we can multiply
both matrices by the same invertible matrix on the left and on the right. If both
B0, B1 are invertible we can bring B0 to the identity and then conjugate B1 to a
Jordan block. This gives us a complex of the form B(λ, n).

If either B0 or B1 is not invertible we will use induction on n + m to show
that (M, δ) is isomorphic to an S (i,w). Clearly, if n+m = 1 then (M, δ) is either
S 0 = S (0, 1) or S 1 = S (1, 1). If n+m ≥ 2 we distinguish four cases depending
on whether Bi is not injective or not surjective. We work out only one of these
four cases.

Suppose B0 has a kernel. Choose a basis vector v in that kernel and let w =
B1v. The latter vector is nonzero because otherwise the twisted complex is
decomposable. We can extend v and w to bases for Cn and Cm such that the
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matrices become 

0
... B�0
0


,



1
... B�1
0


.

By multiplying both on the right by an invertible matrix we can assume that
B�1 starts with a zero row. The pair (B�0, B

�
1) satisfies the induction hypothesis

because B�1 is not invertible. Hence it describes an S (i,w) and the total complex
looks like

· · · S 1
α1�� α0 �� S 0 S 1

α1�� α0 �� S 0 S 1
α1�� α0 �� · · · .

S 1

α1

��

If the bottom S 1 connects somewhere in the middle of the chain then consider
the kernels K0, K1 of B0, B1 restricted to the dotted S 1 ⊕ S 1. If they coincide
then there is a direct summand isomorphic to S 1. If they span K0⊕K1 = S 1⊕S 1

then we can split the total complex in two separate complexes:

· · · S 1
α1�� α0 �� S 0 K1

α0 �� S 0 S 1
α1�� α0 �� · · · .

K0

α1

��

So if (M, δ) is indecomposable then that S 1 must connect to the end of the
chain and hence it is a chain itself. �

Definition 4.21 We will call the S (i,w) string objects and the B(λ, n) band
objects.

Remark 4.22 The string objects with even size can be seen as limits of band
objects:

lim
λ→0

B(λ, n) � S (0, 2n) and lim
λ→∞

B(λ, n) � S (1, 2n).

The first limit can be seen directly from the diagrams of the complexes. For
the second limit, observe that a base can turn the map α0�n + α1J(λ, n) into
α0J(λ−1, n) + α1�n. Therefore we will sometimes indicate these string objects
as B(0, n) and B(∞, n).

Now we want to obtain a similar geometrical interpretation for the Kro-
necker quiver as we did for the linear quiver. Take the unit square and glue the
left end to the right end. We obtain a cylinder with two marked points, one on
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each boundary circle, coming from the corners of the square. This cylinder is a
flat surface and it is possible to measure angles in the standard way by pulling
back to the square. As for the polygon we can define graded line segments
between the marked points.

Let S 0 denote the graded line segment that corresponds to the vertical edge
of the square with phase π2 and let S 1 be the downward-pointing diagonal with
phase 5π

4 . There are two angles going from S 1 to S 0, which we can identify
with the two degree 1 morphisms between S 1 and S 0.

S 0 S 0
S 1

α0

α1

In the case of the polygon, we saw that we could interpret the cone construction
as gluing line segments together along an angle. In the same way, every string
object S (i,w) can be seen as a line segment S (i,w) in the universal cover of the
cylinder.

S
0 S

1

• •

• •
α0

α1

S
0 S

1

• •

• •
α0

α1

S
0 S

1

• •

• •
α0

α1

S
0 S

1

• •

• •
α0

α1

S
0 S

1

• •

• •
α0

α1
. . . . . .S (0,7)

But what about the band objects? There is in fact a second type of curve
with constant phase: a circle that goes around the cylinder. We would like to
use these circles to interpret the band objects, but in order to do this we also
need to attach some extra geometrical information: a local system.

Definition 4.23 A local system on a manifold M is a representation of its
fundamental groupoid L : Π1(M)→ vect(C).

A local system L assigns to each point of L a vector space L(p), called the
fiber over p, and for each homotopy class of paths between two points there is
an invertible map between the vector spaces. This map is sometimes called the
transport along that path. IfM is connected then all the vector spaces have the
same dimension, which is called the rank of the local system.

Lemma 4.24 The indecomposable local systems on a circle S1 are classified
by invertible Jordan blocks.
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Sketch of the proof This is because the fundamental groupoid of the circle is
equivalent to the group Z. Up to isomorphism, a representation φ : Z→ GLn is
determined by the conjugacy class of the invertible matrix φ(1), which can be
brought in Jordan normal form. �

If we fix one horizontal circle in the cylinder then each band object B(n, λ)
can be identified with a local system on that circle, for which the transport
along the circle is a Jordan block of size n and eigenvalue λ. We denote the
embedded circle together with the local system by B(n, λ).

The string objects can also be considered as line segments equipped with
a rank 1 local system. Local systems on a contractible space are classified by
their rank and a rank n local system is the direct sum of n copies of a rank 1
local system. Therefore we can interpret S 0 ⊕ S 0 either as two line segments
each with a rank 1 local system, or as one line segment with a rank 2 local
system. So from now on we assume that a graded line segment L automatically
comes with a local system and we let L(p) denote the fiber at p.

To work with these local systems, we also need to upgrade the morphism
spaces. Every angle around an intersection point p should be seen as a mor-
phism between the fibers of the two local systems at p. So if L1, L2 are local
systems over two different line segments then we set

Hom(L1,L2) =
�

αp

vect(L1(p),L2(p))αp,

where αp represents an angle at the intersection point p. In other words, the
angles come with coefficients that are linear maps.

This idea fits well with the cone construction. If we want to stitch two lo-
cal systems together with a morphism fαp, where f ∈ vect(L1(p),L2(p)) is
invertible, we use f to identify the two fibers. If f is not invertible we break
the local system in two (one where f is invertible and one where it is zero) and
only stitch the bits where f becomes invertible.

The object B(n, λ) can be seen as two local systems of rank n, one on S 0 and
one on S 1, stitched together on one end by the identity and on the other end by
the Jordan block. Together this gives a curve isotopic to the circle with a local
system for which the transport is equal to the Jordan block: B(n, λ).

The final adaptation needed is the rule for the product. The coefficients for
the angles must be included bilinearly in the products, but consecutive angles
in a product do not connect fibers at the same intersection points, so the linear
maps do not match up. Luckily this can easily be solved using the local system.
If e : p→ q is each edge of the polygon that lies on Li then Li(e) : L(p)→ L(q)
is a homomorphism between the fibers on p and q. Therefore we can string all
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these maps together and define an extended product:

f1α1

f2α2f3α3

f4α4

e0

e1

e2

e3

e4
ᾱ0

µ( f1α1, . . . , f4α4) = L1(e0) f1L1(e1) . . .L1(e3) f4Lk(e4) · ᾱ0 + · · · .

If there is more than one polygon bounded by these angles, we take the sum of
these expressions. With these extra features in operation one can check that the
same observations we made for D S• in the case of the linear quiver also hold
for the Kronecker quiver.

Observation 4.25 The objects in D S• can be identified with direct sums of
graded line segments with local systems. The morphisms are angles weighted
by maps between the fibers of the local systems and polygons contribute to
products weighted by the total transport around them.

4.2.3 The Cyclic Quiver

The final quiver we will have a look at is the cyclic quiver Q = Cn. It has n
vertices v1, . . . , vn and n arrows ai : vi → vi+1 where the index is considered
modulo n.

a1

a2

a3

a4

a5
v1

v2

v3

v4

v5

We allow the case n = 1 where the quiver has one vertex and one loop. There
are n projective modules Pi = viCQ in P• and n simple modules S i = viCQ/J
in S•. The dual arrows αi = a∗i are degree 1 morphisms from S i+1 to S i.

The situation is slightly different from the two previous cases. The algebra
CQ is infinite-dimensional because there are paths with arbitrary length. If we
take the sum of all paths of length n we get a central element in CQ that we
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will denote by

� = an . . . a1 + a1an . . . a2 + · · · + an−1 . . . a1an.

One can easily check that C[�] is a polynomial ring and CQ is a free C[�] mod-
ule generated by all paths of length < n. Because CQ is infinite-dimensional,
the three categories D S• ⊂ D mod• Q ⊂ D P• are all different and this is reflected
in the classification theorem.

Theorem 4.26 The indecomposable objects in D P• are shifts of object of the
form

• S (i,w) = (S i ⊕ · · · ⊕ S i+w−1,αi + · · · + αi+w−1),

• B(k, λ) =Mρ with ρ(an) = J(k, λ) and ρ(ai) = �k for i � n,

• Pi,

with i ∈ {1, . . . , n}, λ ∈ C and w ∈ N. We have that S (i,w) ∈ D S•, B(n, λ) ∈
D mod• Q and Pi ∈ D P•.

Sketch of the proof Every indecomposable object in D P• is a shift of a finitely
generated CQ-module M. If M is infinite-dimensional then there is an injective
morphism Pv → M which splits because Pv is projective. Therefore, M � Pi.

If M is finite-dimensional, it is of the form Mρ for some representation ρ.
Because � is central we can split M as a direct sum according to the eigenvalues
of �. Therefore, � can only have one eigenvalue λ. If λ is nonzero then all ρ(ai)
are invertible and we can conjugate them to the identity matrix, except for
ρ(an) which can be conjugated to a Jordan block. If λ = 0 then the module is
nilpotent and hence it sits in D S•. We can use the same argument as in Theorem
4.20 to complete the classification. �

Again we can interpret this classification in terms of lines on a surface. Take
a disk with one marked point at the center and n on the boundary. We identify
the n simple objects with the n anticlockwise arcs on the boundary and the n
projective objects with the spokes. The B(n, λ) will correspond to curves that
circle around the center equipped with a local system with transport equal to
J(n, λ).
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a1

S 1

P1

α1

a2

S 2

P2
α2

a3

S 3
P3

α3
a4

S 4

P4

α4

a5

S 5

P5

α5

•

•

••

•
•

B(n,λ)

...
P1

S 1

...
P2

S 2

...
P3

S 3

...
P4

S 4

...
P5

S 5

The arrows of the quiver Q correspond to morphisms between the projectives
and can be seen as angles around the marked point at the center. The dual
arrows run between the simples and they can be seen as angles around the
marked points on the circle.

At first everything seems to work out except for the gradings; if we measure
our angles in the Euclidean plane then the morphism an . . . a1 from P1 to itself
must have degree 2 because it turns around 2π. The solution to this problem is
to consider this surface as a cylinder with an infinite end instead of a disk. In
that case, the line segments Pi all have phase π2 and the S i have phase 0. The
triangle bounded by S i, Pi and Pi+1 has two angles of π2 and one zero angle at
infinity.

Observation 4.27 We can interpret the representation theory of the cyclic
quiver in terms of curves on a cylinder with one infinite end. The category D S•

contains the line segments that sit on the boundary circle and D mod• Q the line
segments that are compact (i.e. do not go to infinity), while D P• also includes
the noncompact line segments.

4.3 Points and Sheaves

In this section we will review the three quivers from a different geometrical
perspective: namely algebraic geometry. We will work our way through the
list in reverse order.

4.3.1 The Cyclic Quiver

Let us start with the one-loop quiver. Its path algebra is the polynomial ring
R = C[X]. This ring can be viewed as the ring of polynomial functions on
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the affine line A1 = C. For each point p ∈ C there is a morphism ρp : R →
C : f (X) → f (p) that evaluates each function at the point p. This morphism
has as kernel p = { f ∈ R | f (p) = 0} = (X − p) and if we divide out this kernel
we get the simple module S p = J(p, 1). All simple modules arise in this way
so we can conclude that the simple R-modules correspond to the points on the
affine line:

{points of A1}↔ {maximal ideals in R}↔ {simple R-modules}.
The higher Jordan blocks can be interpreted in a similar way: while ρp assigns
to each function its value in p, the map R → J(p, n) = C[X]/(X − p)n as-
signs to each f its nth-order Taylor approximation in p, so the J(p, n) explore
infinitesimal surroundings of p.

Given a module M we say that it is supported at p ∈ A1 if M/pM � 0.
Clearly, S p is only supported at p and at no other q ∈ A1. The same holds
for J(p, n), but for R as a module over itself the situation is different. It is
supported at all p. At every point R/p is a one-dimensional vector space and
we can group all these vector spaces together into a one-dimensional vector
bundle (or line bundle) over A1. Each element m ∈ R gives an element in R/p
for every p ∈ A1 so they can be seen as sections of the bundle. The line bundle
is trivial because the element 1 ∈ R gives a section that forms a basis in each
fiber. Because A1 is contractible every vector bundle over A1 is trivial and if it
has rank n, it will correspond to the projective (even free) module R⊕n:

{vector bundles over A1}↔ {projective R-modules}.
Modules that are neither projective nor simple have a more intricate geometri-
cal interpretation that is called a coherent sheaf. We will discuss this concept
in more detail in Chapter 7, but for now it is sufficient to know that a coherent
sheaf on A1 is the same as a finitely generated C[X]-module:

D Coh• A1 = D Mod• C[X].

Observation 4.28 The representations of the one-loop quiver can be inter-
preted as sheaves on the affine line A1. Under this correspondence the simple
module S p becomes the skyscraper sheaf Sp, while the free module C[X] be-
comes the trivial line bundle O , also known as the structure sheaf.

We will now extend this geometrical interpretation to the higher cyclic quiv-
ers. Consider again the affine line A1. On this space we have a left action of
the cyclic group G = �g | gn� � Zn:

gk · x = ζk x where ζ = e
2πi
n .
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The orbits for this action all have size n except for the zero orbit, which consists
of one point. The action transfers to a right action on the coordinate ring C[X]
such that f ·g(x) = f (g · x). If we want to quotient out the action, the coordinate
ring of the quotient A1/G should be seen as the ring of G-invariant functions
C[X]G, because these are the functions that are constant on the orbits. This ring
is C[Xn], which is isomorphic to C[X], so from this perspective A1/G looks the
same as A1.

However, this does not fully capture the geometry, because A1/G has one
special point (the zero), while all points of A1 are alike. Therefore, it is better
to describe the quotient not as an affine variety but as something more delicate:
the orbifold [A1/G].

To do this we introduce the notion of a G-equivariant sheaf. This is a sheaf
on A1 together with an action of G that is compatible with the action of G
on A1. To be more precise, it is a C[X]-module M with a G-action such that
(m f (x)) · g = (m · g)( f (x) · g). Both actions can be packaged together in one
algebra

C[X] �G :=
C�X, g�

�gXg−1 − ζkX, gn − 1� ,

and then M naturally gets the structure of a C[X] �G-module.
Therefore, it makes sense to define the derived category of G-equivariant

coherent sheaves as

D Coh•[A1/Zn] := D Mod• C[X] �G.

This category is the right substitute for sheaves on [A1/G], so D Coh•[A1/G]
should be considered as the derived category of coherent sheaves on the orb-
ifold [A1/G].

Theorem 4.29 The algebra C[X] �G is isomorphic to CQ with Q the cyclic
quiver with n vertices.

Sketch of the proof Put ζ = e
2πi
n and define

ek =
1
n

n�

i=1

ζkigi.

It is easy to check that
�

k ek = 1 and eie j = δi jei. In other words, they form a
set of orthogonal idempotents. Moreover, we have Xek = ek+1X and

X =
�

i

ei+1Xei,

where the indices are taken modulo n. Now construct a morphism φ : CQ →
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C[X] �G that maps the vertices to the ek and the arrows ai to the ei+1Xei. One
can easily check that this is an isomorphism. �

Observation 4.30 The representation theory of the cyclic quiver can be geo-
metrically interpreted as coherent sheaves on an orbifold:

D Coh•[A1/G] ∞= D Mod• CCn.

4.3.2 The Kronecker Quiver

To get a similar interpretation for the Kronecker quiver, we have to look at the
algebraic geometry of the projective line. This is the affine line with an extra
point at infinity: P1 = A1 ∪ {∞}. Using homogeneous coordinates we can also
see it as

P1 := {(x : y) | (x, y) ∈ C2 \ {(0, 0)}},

where (x : y) is considered up to a multiple: (x : y) = (λx : λy). We can see it
as the union of two affine lines, {(x : 1) | x ∈ C} and {(1 : y) | y ∈ C}, whose
intersection is C∗.

The coordinate rings of the two affine lines are RX = C[X] and RY = C[Y].
Both X and Y can be considered as functions on the overlap and there they
satisfy the relation Y = 1

X . The coordinate ring on the overlap can be seen as
RXY =

C[X,Y]
(XY−1) . On the other hand, the only functions in C[X] and C[Y] that

extend to P1 are the constant ones. We can summarize this in two diagrams:
one of spaces and one of algebras.

P1

A1
��

��

A1��

��

C∗
� �

��

� �

��

C � �

��

� �

��
RX � �

��

RY� �

��
RXY

The ring of functions on P1 is just C, which does not fully capture the geometry
of the projective line. Therefore we cannot view sheaves on P1 as modules over
its coordinate ring.

The solution to this problem is to view a coherent sheaf over P1 as two
coherent sheaves over the two A1’s glued together. This means that we need
three ingredients: a finitely generated RX-module MX , a finitely generated RY -
module MY and a gluing isomorphism between them on the overlap. The latter
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is an isomorphism of RXY -modules:

φM : MX ⊗RX RXY����������������������
MXY

→ MY ⊗RY RXY����������������������
MYX

.

We call such a triple M = (MX ,MY , φM) a coherent sheaf on P1.
The morphisms in Coh P1 are the expected ones: pairs of module morphisms

(ψX : MX → NX ,ψY : MY → NY ) that commute with the gluing maps. There is
a neat way to see these morphisms as the zeroth homology of the complex



HomRX (MX ,NX)
⊕

HomRY (MY ,NY )


d0−→ HomRXY (MXY ,NXY )

with d0(ψX ⊕ ψY ) = ψX ⊗RX RXY − φ−1
N ◦ (ψY ⊗RY RXY ) ◦ φM .

Theorem 4.31 Every coherent sheaf is a direct sum of the following types:

(i) S (λ, n) :=
� C[X]

(X−λ)n ,
C[Y]

(Y−λ−1)n ,�
�
,

(ii) S (0, n) := (C[X]/(Xn), 0, 0),
(iii) S (∞, n) := (0,C[Y]/(Yn), 0),
(iv) O(k) := (C[X],C[Y],Yk),

where λ ∈ C∗, n ∈ N and k ∈ Z.

Sketch of the proof Decompose MX as a direct sum of indecomposable mod-
ules. Its components are either of the form RX/(X − λ)n with λ ∈ C or the free
module RX . If we tensor with RXY the latter stays free, while RX/(X − λ)n be-
comes RXY/(X −λ)n. In the case λ � 0 this module remains n-dimensional, but
for λ = 0 it becomes zero. We can reason the same way for MY but note that
RXY/(Y − λ)n can be rewritten as RXY/(X − λ−1)n.

Pairing up isomorphic components we see that every C[X]/(X − λ)n in MX

must be balanced by a C[Y]/(Y − λ−1)n in MY and every C[X] by a C[Y]. Only
the C[X]/(Xn) in MX and the C[Y]/(Yn) in the MY do not need to be balanced
and they can be split off as irreducible sheaves of type S (0, n) or S (∞, n).

The rest needs to be glued together by an isomorphism. For example, if
MXY = R⊕n

XY then this automorphism is an invertible (n × n)-matrix G with
coefficients in RXY . By applying automorphisms of MX = R⊕n

X and MY = R⊕n
Y

this matrix is only defined up to multiplication on the right with invertible
matrices over RX and on the left with invertible matrices over RY . A classical
theorem by Dedekind and Weber tells us that we can bring G into diagonal
form with integer powers of Y on the diagonal, so in that case the sheaf is a
direct sum of O(k)’s.

On the other hand, morphisms between RXY -modules of the form RXY/(X −
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λ)n all come from RX-morphisms. Therefore we can assume that the gluing be-
tween these components is just the identity, so we get direct sums of S (λ, n)’s.
For more details see [Gro57, Sor, Har77, HM82, str]. �

Remark 4.32 The Sλ := S(λ, 1) are the skyscraper sheaves and the O(k)
are the line bundles over P1. The sheaf O := O(0) is the trivial line bundle or
structure sheaf.

In this way we have constructed an ordinary category of coherent sheaves,
but we want to upgrade it to an A∞-category. Just as we substituted every mod-
ule with a free resolution, we can do the same here but now we need locally
free resolutions. These are sheaves of the form (MX ,MY , φM) where both MX ,
MY are free. It is easy to check that every coherent sheaf has a locally free
resolution, which we can use to make dg-hom-spaces.

There is however one extra feature: as we saw earlier the sheaf homomor-
phisms themselves form the zeroth homology of a complex. Therefore we have
two differentials and by taking their sum we get one big complex. The mor-
phism spaces in Coh• P1 are the cohomologies of these complexes. The degree
0 parts are the ordinary morphisms of sheaves, while the higher-degree part
measures both the algebraic extensions between the modules as the geometri-
cal obstructions in the gluing process.

Example 4.33 The dg-hom-space between O(r) and O(s) is

HomRX (RX ,RX) ⊕ HomRY (RY ,RY )��������������������������������������������������������������������������������
degree 0

⊕HomRXY (RXY ,RXY )��������������������������������������
degree 1

with d( f (X) ⊕ g(Y)) = f (X) − Xs−rg(Y).
If r > s then the second term can never cancel the first because it only

consists of negative powers of X. Therefore, the zeroth homology is zero. If r ≤
s then we have the following basis for the zeroth homology ( f , g) = (Xi, Y s−r−i)
with 0 ≤ i ≤ s − r:

Coh0(O(r),O(s)) =


C(1, Y s−r) + · · · + C(Xs−r, 1), r ≤ s,

0, r > s.

The first homology on the other hand consists of C[X, X−1] divided by the
vector space spanned by Xi and Xs−r−i with i ≥ 0. If s < r − 1 this space is
nonzero and has dimension r − s − 1:

Coh1(O(r),O(s)) =


0, r ≤ s + 1,

CY + · · · + CYr−s−1, r > s + 1.
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Theorem 4.34 The derived A∞-category of coherent sheaves D Coh• P1 is
A∞-equivalent to D mod• CQ where Q = K2 is the Kronecker quiver.

Sketch of the proof We can construct all sheaves using O(0) and O(1):

• O(i − 1) is the kernel of O(i)⊕2 ( 1 Y )−→ O(i + 1),

• O(i + 1) is the cokernel of O(i − 1)

� 1
Y
�

−→ O(i)⊕2,

• S ( λ
µ
, n) is the cokernel of O(0)

(λ+µY)i

−→ O(n).

Therefore, D Coh• P1 = �O(0),O(1)�. Take O(0) ⊕ O(1) and look at its A∞-
endomorphism algebra. Using the calculation in Example 4.33 we can con-
clude that

Coh (O(0) ⊕ O(1),O(0) ⊕ O(1)) =
�
C 0

C + CY C

�

concentrated in degree 0. This is isomorphic to the path algebra of the Kro-
necker quiver, so �O(0),O(1)� = DCQ = D mod• CQ. �

Remark 4.35 In this identification the string objects of odd length corre-
spond to the line bundles O(k), the string objects of even length with the
S (0, n) and S (∞, n) and the band objects with the S (λ, n).

Observation 4.36 The representation theory of the Kronecker quiver can be
geometrically interpreted as coherent sheaves on the projective line:

D Coh• P1 ∞= D Mod• K2.

4.3.3 The Linear Quiver

For the interpretation of the linear quiver we need the notion of a Landau–
Ginzburg model. This consists of a pair (X, f ) where X is a space (an affine
variety or an orbifold) and f : X → C is a function. To this pair we can as-
sociate a curved algebra (R, f ) where R is the coordinate ring of X and f is
interpreted as an element in R.

The category of singularities of the Landau–Ginzburg model (X, f ) is de-
fined as the category of matrix factorizations. We will see in Chapter 7 that
it gives a description of the geometry of the singular locus of Y = f −1(0).
Therefore, it is also denoted by

DSing±Y = DMF±(R, f ).

We will consider the case of the orbifold X = [A1/G]. As we saw previously
the correct notion for its coordinate ring is the algebra C[X] � G, which is
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isomorphic to the path algebra CQ of the cyclic quiver. This algebra has a
central element � = Xn which acts on each projective Pv as multiplication with
the path of length n that starts and ends at v. This action gives an element
µ0(1) ∈ Hom(Pv, Pv) which we can use to turn the Z2-graded version of P•

into a curved category P±� . The objects in DP±� consists of pairs (P, d) of a Z2-
graded projective CQ-module and a degree 1 map d : P → P such that d2 acts
as multiplication by �.

Theorem 4.37 Every indecomposable object in DP±� is a twisted complex of
the form

Mi j =
�
Pi ⊕ Pj[1],

� 0 pi j
p ji 0

��
,

where puv is the shortest path from v to u.

Sketch of the proof Let (P, d) be any matrix factorization. We split d into two
parts d10 + d01 that run between the degree 0 and degree 1 parts. Because
Hom(Pv, Pw) = pwvC[�] and C[�] is a principal ideal domain, we can choose
a basis in P0 and P1 such that d01 becomes a diagonal matrix. The fact that
d01d10 = � implies that d10 is also diagonal. If (P, d) is indecomposable, d01 is
a (1 × 1)-matrix and hence of the form Mi j. �

Now let us have a brief look at the hom-spaces:

TwP±�(Mi j,Mkl) =
� pkiC[�] pk jC[�]

pliC[�] pl jC[�]

�

with d
�

a b
c d

�
=
�

0 pkl
plk 0

� �
a b
c d

�
−
�

a −b
−c d

� � 0 pi j
p ji 0

�
. When i = j or k = l the homol-

ogy is always zero, so Mii is a zero object. Furthermore, we may assume that
i < j and k < l because Mi j = Mji[1]. Note that the indices are in fact cyclic
but now we assume that they run from 0 to n − 1. With these assumptions we
get the following table, with ι =

�
pki 0
0 pl j

�
and γ =

� 0 pk j
pli 0

�
.

Case DP�
0(Mi j,Mkl) DP�

1(Mi j,Mkl)

i ≤ k < j ≤ l Cι 0
k < i ≤ l < j 0 Cγ

Otherwise 0 0

This is exactly the same table as for the linear quiver of length n−1 if we make
the identifications Mi j ↔ S i+1 j.

Observation 4.38 The representation theory of the linear quiver can be ge-
ometrically interpreted as the category of singularities of a Landau–Ginzburg
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model

DMF±([A1/Zn], Xn) ∞= DMod±Ln−1.

4.4 Picturing the Categories

In this section we will draw the categories D Mod• Q for the three quivers we
have studied. In each case we draw all the indecomposable objects and we
order them on the X-axis according to their phase. We also draw the inde-
composable degree 0 angle morphisms. These are those angles that cannot be
written as a product of smaller angle morphisms. Because angles are always
positive they will point in the positive X-direction.

The resulting picture is also known as the Auslander–Reiten quiver of the
category and has been studied in detail in the representation theory of finite-
dimensional algebras [ARS97]. The picture for D Coh• P1 can be found in
[Kel07].

For each category we will also discuss its symmetries. These symmetries are
a consequence of the geometric interpretations and can be seen as A∞-functors
of the categories. The different geometrical interpretations will often give rise
to different symmetries.

4.4.1 The Linear Quiver

Using the interpretation as graded line segments, the diagram below shows the
category D S• = D P•.

−2π −π 0 π 2π
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

We ordered the objects in a grid using the phase for the horizontal axis and
the anticlockwise difference between the source and target of the graded line
segment for the vertical axis. Therefore, the shift operator is a glide reflection:
it adds π to the phase and swaps source and target so it is a translation over π
followed by a horizontal reflection.

We can draw the same picture for the derived category of representations of
the An-quiver and in it we can easily identify the subcategories S•, mod• Q and
P•.



96 Quivers

mod• Q P•

S•

S 1[1]

P2[1]

S 2[1]

P3[1]

S 23[1]

S 3[1]

P4[1]

S 24[1]

S 34[1]

S 4[1]

S 1

P2

S 2

P3

S 23

S 3

P4

S 24

S 34

S 4

S 1[−1]

P2[−1]

S 2[−1]

P3[−1]

S 23[−1]

S 3[−1]

P4[−1]

S 24[−1]

S 34[−1]

S 4[−1]

S 1[−2]

P2[−2]

S 2[−2]

P3[−2]

S 23[−2]

S 3[−2]

P4[−2]

S 24[−2]

S 34[−2]

S 4[−2]· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

The geometrical interpretation shows that this category has a special autoe-
quivalence R. This autoequivalence rotates all the line segments over 2π

n+1 and
adds the same angle to all the phases. This autoequivalence is obvious from
the geometric point of view but highly nontrivial if we interpret the category
as D mod• Q. This functor maps some representations to others like S i, which is
mapped to S i−1 if i > 2. However, S 1 is mapped to the shift of a representation:
Pn[1]. In representation theory this functor is also known as the Auslander–
Reiten translate (or its inverse depending on the direction of the rotation) and
it corresponds to a horizontal translation over 2π

n+1 in the diagram.

Remark 4.39 For the second geometrical interpretation we only used the
Z2-graded version. This means that we can forget about the phases of the line
segments, and the category DS± is a rolled up version of D S• that only contains
two copies of modQ, which are glued together to form a cylinder.

modQ

modQ[1]
→

4.4.2 The Kronecker Quiver

For the Kronecker quiver all curves with a horizontal phase are of the form
B(−, n), so if we set them on a diagram with as horizonal axis the phase, they
all sit on the same spot. To distinguish them we will put them in a box with
width parametrized by λ and height by n. In this way we get a tower of objects
on the locations where the phase is a multiple of π. Each object in the tower
is connected to the one above it by the injection B(λ, n) ⊂ B(λ, n + 1) and to
the one below it by the projection B(λ, n)→ B(λ, n− 1). There are no degree 0
morphisms between band objects with different λ.

The string objects with odd size all have different phases: for S (0, 2k+1) the
phase is π2 − tan−1(k), while for S (1, 2k+1) it is − π2 + tan−1(k+1). Each of these
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objects is connected to the next by two degree 0 morphisms coming from the
two embeddings (one on the left and one on the right). The subcategory mod• Q
consists of everything with phases in (− π2 , π2 ].

− π2 ππ
20

S 0[−1]S (0,w)[−1] S 1 S (1,w)
· · ·· · ·

S (1,w)[1]S 1[1]S 0S (0,w)
· · ·· · ·

∞0 λ

B(n,λ)[−1]

· · ·

...
n
...
n
...
n

∞0 λ

B(n,λ)

...
n
...
n
...
n

The picture indicates a symmetry of the category: we can shift all the odd
string objects 1 to the right. On the cylinder this corresponds to a Dehn twist:
we turn the upper boundary circle one full turn to the left, as if trying to open
a jar. This gives every curve that crosses the cylinder an extra twist: S (1,w)
becomes S (1,w + 2), while S (0,w) becomes S (0,w − 2) and S 0 turns into
S 1[1]. Again we have an equivalence that is natural from the curve perspective
but highly nontrivial from the quiver point of view.

A second symmetry comes from the geometrical interpretation as sheaves
on P1. From this point of view every element g ∈ PGL2(C) induces a transfor-
mation of the projective line that changes the sheaf S (p, n) to S (g · p, n). The
locally free sheaves are unaffected by these transformations. While obvious
from the P1 point of view, this symmetry is very unnatural from the marked
cylinder point of view because it mixes strings and band objects.

4.4.3 The Cyclic Quiver

In this picture there are only two phases up to shift. At π2 we find all the pro-
jectives connected cyclically by the morphisms ai. At 0 we find all the finite-
dimensional modules, which we will order vertically according to their dimen-
sion. The string modules S (i,w) can be ordered cyclically according to their
starting point. In this way we get a tube with, at each height n, modules con-
nected to the next and previous levels by a rhombic mesh. At heights that are
multiples of n we find a floor of band objects.
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− π2 π
2

Pi[−1] Pi

0 π

S (i,w)[−1]

B(λ, 1)[−1]

S (i,w)

B(λ, 1)

......
...

...

...
...

...
...

...

...
......

......
...

...

...
...

...
...

...

...
......

Again there are symmetries. The first one maps S (i,w) → S (i + 1,w) and
Pi → Pi+1 but fixes all the B(λ, k). It corresponds to a rotation of the marked
cylinder over 2π

n . The second symmetry fixes the S (i,w) and Pi but rescales the
B(λ, k) to B(rλ, k). This corresponds to the rescaling of the orbifold [A1/G] by
a factor r.

4.5 A First Glimpse of Homological Mirror Symmetry

In this chapter we have seen that the representation theory of certain quivers
can be interpreted geometrically in two different ways.

• The first interpretation has to do with the intersection theory of curves on
a surface and gives rise to an A∞-category where the objects are embedded
curves and the morphisms are linear combinations of (angles at) intersection
points. These categories are baby examples of a larger class of categories
called Fukaya categories.

In general, Fukaya categories describe the intersection theory of certain n-
dimensional submanifolds, called Lagrangian submanifolds, of 2n-dimensional
symplectic manifolds. Just like for curves on a surface, two Lagrangian sub-
manifolds will in general intersect at points and hence we can take the in-
tersection points as a basis for the morphisms. There are many different
versions of such categories: Fukaya categories, wrapped Fukaya categories,
Fukaya–Seidel categories. Such constructions are often called A-models be-
cause they are related to type IIA superstring theory in physics.
• The second interpretation has to do with coherent sheaves on complex al-

gebraic varieties. These are generalizations of vector bundles and the mor-
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phisms measure maps between them (in degree 0), obstructions to the ex-
istence of maps and extensions between sheaves (in higher degrees). Again
there are many different flavors of such categories: the derived category of
coherent sheaves, categories of matrix factorizations, categories of singular-
ities, etc. These constructions are called B-models because they appear in
type IIB string theory.

The different models (quiver, A-model and B-model) give A∞-categories that
are not precisely equivalent but they become equivalent after we derive them.
This procedure adds more objects to the categories and makes them nicer in a
certain way without changing their representation theory.

Below is a list of models we have matched so far. This seems a small list
but it is just the tip of the iceberg. It turns out that, with some creativity, it
is possible to come up with a suitable B-model for almost any A-model and
vice versa. This phenomenon was predicted by superstring theory and now
goes under the name of Homological Mirror Symmetry. In the next part we are
going to examine this idea in detail.

A-model Quiver B-model

Filled n-gon Linear quiver Curved orbifold

Ln−1�� �� �� ([A1/Zn], Xn)

Doubly marked cylinder Kronecker quiver Projective line

K2 �� P1

Punctured 1-marked disk One-loop quiver Affine line

�� A1

Punctured n-marked disk Cyclic quiver Orbifold

Cn [A1/Zn]


