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Smooth versus singular

1.1 A crash course in algebraic geometry

In algebraic geometry we study the connections between algebraic varieties, which
are sets of solutions of polynomial equations, and complex algebras.

An affine variety is a subset X ⊂ Cn that is defined by a finite set of polynomial
equations.

X := {x ∈ Cn|f1(x) = 0, . . . , fk(x) = 0}

A morphism between two varieties X ∈ Cn and Y ∈ Cm is a map φ : X → Y
such that there exists a polynomial map Φ : Cn → Cm with φ = Φ|X. Such a
morphism is an isomorphism if φ is invertible and φ−1 is also a morphism. The
affine varieties with their morphisms form a category which we will denote by
Aff− var.

We can consider C as a variety, so it makes sense to look at the morphisms from
a variety X to C, these maps are also called the regular functions on X. They are
closed under pointwise addition and multiplication so they form a commutative
C-algebra: C[X].

This algebra can be described with generators and relations. To every variety
X ⊂ Cn the set of polynomial functions that are zero on X form an ideal in
C[x1, · · · , xn]. If we divide out this ideal we get the ring of polynomial functions
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on X.
C[X] := C[X1, . . . , Xn]/(f |∀x ∈ X : f(x) = 0)

This algebra is finitely generated by the xi and it also has no nilpotent elements
because f(x)n = 0⇒ f(x) = 0.

Take care: if X = {x ∈ Cn|f1(x) = . . . ,= fk(x)} then it is not necessarily
true that C[X] is isomorphic to C[X1, . . . , Xn]/(f1, . . . , fk) because this algebra
might have nilpotent elements. To solve this we need to define the radial ideal of
(f1, . . . , fk) :√

(f1, . . . , fk) := {h ∈ C[X1, . . . , Xn]|∃j ∈ N : hj ∈ (f1, . . . , fk)}.

With this notation we have that

Theorem 1.1 (Hilbert Nullstellensatz). If X = {x ∈ Cn|f1(x) = . . . ,= fk(x)}
then

C[X] ∼=
C[X1, . . . , Xn]√

(f1, . . . , fk)
.

If R is a finitely generated commutative C-algebra without nilpotent elements,
we will call this an affine algebra. The affine algebras together with algebra
morphisms form a category, which we denote by Aff− alg.

A morphism between varieties, φ : X → Y, will also give an algebra morphism
between the corresponding rings but the arrow will go in the opposite direction:

φ∗ : C[Y]→ C[X] : g 7→ g ◦ φ.

In light of the previous section we can say that operation C[−] defines a con-
travariant functor from Aff− var to Aff− alg.

Theorem 1.2 (Main theorem of affine geometry). The functor C[−] defines
an anti-equivalence between Aff− var and Aff− alg. So working with affine
varieties is actually the same as working with affine algebras but with all maps
are reversed.

The anti-equivalence implies that we can also go in the opposite direction: from
algebras to varieties. Because R ∈ Aff− alg is finitely generated, it can be
written as a quotient C[x1, . . . , xn]/(f1, . . . , fk). Therefore we can associate to R
the variety V(R) in Cn defined by the fi. This variety depends on how we present
R by generators and relations but if we chose different generators and relations
we get an isomorphic variety. We have the following identities

V(C[X]) ∼= X and C[V(R)] ∼= R.
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One can also give a more intrinsic description of V(R). For every point p ∈ V(R)
one can look at the embedding p ↪→ V(R). From the algebraic point of view this
will give a map from R → C[p] = C, so points correspond to maps from R to
C. Such a map is determined by its kernel. As C is an algebraically closed field
these kernels correspond to the maximal ideals of R. So we can also define V(R)
as the set of all maximal ideals of R.

If f : R → S is a morphism an m ⊂ S is a maximal ideal then f−1(m) will be a
maximal ideal of R, so we have a map

V(S)→ V(R) : m→ f−1(m),

which is a morphism of affine varieties.

We have only described V(R) as a set but now we want to give V(R) some
more structure. This can be done by introducing the Zariski Topology. This
topology can be defined by its closed sets: C ⊂ V(R) is closed if there is an ideal
c C R such that C = {m ∈ V(R)|c ⊂ m}. Now if R = C[x1, . . . , xn]/i we can
see c as generated by polynomials (ci) so the points in V(R) that lie on C are
exactly those for which the ci are zero. So closed sets are subsets that correspond
to zeros of polynomial functions. Every closed set C will give us a morphism
R → C[C] ∼= R/c which is a surjection. Conversely every surjection R → S will
give us an embedding of a closed subset V(S) in V(R).

Open sets on the other hand are unions of subsets for which certain polynomials
are nonzero. Contrarily to closed subsets, open subsets can not always be consid-
ered as affine varieties. F.i. in C2 the complement of the origin is an open subset
but it is not isomorphic to an affine variety. Basic open sets are sets on which
one polynomial f does not vanish. Such a set can be considered as the variety
corresponding to the ring

R[1/f ] =

{
r

f i
|r ∈ R, i ∈ N

}
.

This construction is called a localization.

The Zariski topology is not the same as the ordinary complex topology on V(R) ⊂
Cn. The ordinary topology has lots more closed (open) sets. For instance a closed
ball with finite radius around a point is closed in the ordinary topology of Cn,
but not in the Zariski topology because the zeros of a nonzero polynomial never
contain closed balls.

The duality between algebras and geometry allows us to make a translation table.
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Geometry Algebra
Affine Variety Affine Algebra

Morphism Algebra Morphism
Point Maximal Ideal

Closed Set Semiprime Ideal (i.e. fn ∈ i⇒ f ∈ i)
Intersection of closed Sets Sum of ideals

Union of closed sets Intersection of ideals
Embedding of a closed subvariety Surjection

The image is dense Injection
Connected does not contain idempotents

A variety is called irreducible if it is not the union of two closed subsets. On the
algebra level this means that the algebra is a domain: it has no zero divisors.
Irreducible varieties have the property that all nonempty open sets are dense.
From now on we will work with irreducible varieties.

To an irreducible variety X ⊂ Cn we can associate a dimension. There are several
equivalent ways to do this. One of them is to look at the function field

C(X) := {f
g
|f ∈ C[X], g ∈ C[X] \ {0}}.

This is a field extension of C and we can look at its transcendency degree. This
is the maximal number of elements you can find in C(X) that are algebraically
independent over C. The dimension of X is by definition equal to the transcen-
dency degree of C(X). From this definition it is clear that Cn has dimension n
because the transcendency degree of C(X1, . . . , Xn) is n. There is also a second
characterization of the dimension of C[X]: it is the length n of the largest chain
of prime ideals

0 ( p1 ( · · · ( pn ( R.

you can find in R. This notion is also called the Krull dimension of R.

1.2 Formal completions

Varieties are a generalization of manifolds to the algebraic setting, but they are
a lot more harder to work with. One of the reasons for this is that unlike for
manifolds not all points in a variety look the same. Around every point in an
n-dimensional manifold we can find an open neighborhood that is diffeomorphic
to Rn.

If we want to arrive at something similar in the case of varieties, we must do
something more clever than just look at an open neighborhood, because there are
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very few open subsets in the Zariski topology. To encode the local information
of a variety around a point we will need the notion of formal completion.

If R is a ring and m an ideal we define the m-adic completion of R at m as the
ring

R̂m
∼= lim
←
R/mi := {(xi)i∈N|xi ∈ R/mi+1 and xi + m

i+1 = xj + m
i+1 if i < j}.

with componentwise addition and multiplication. If it is clear for which ideal we
construct the completion we will use R̂ instead of R̂m.

There is a morphism

R→ R̂m : r 7→ (r + m
i+1),

which is an embedding if ∩∞i=1m
i = 0. The ring R̂m has an ideal m̂ = {(xi)i∈N|xi ∈

m/mi+1}, which is the ideal generated by the image of mC R under the natural

morphism. It is easy to check that R̂/m̂i ∼= R/mi.

Just like you can approximate a real number by its consecutive decimal approxi-
mations, you should see the sequences as consecutive approximations and there-
fore the ring is called the completion of R. Indeed, if (ri) ∈ R̂ we can find
r̃i ∈ mi−1 such that ri = r̃0 + · · · + r̃i + mi, so it make sense to write (ri) as
r = r̃0 + r̃1 + r̃2 + . . . . More general it also makes sense to consider infinite sums
where the r̃i are elements in m̂

i and treat these as elements in R̂.

If you look at the polynomial ring R = C[X] and the ideal m = (X), we can

see that the elements in the ring R̂m can be seen as infinite power series. So the
ring R̂m is also the ring of formal power series in X. The same holds for more
variables

̂C[X1, . . . , Xn](X1,...,Xn) = C[[X1, . . . , Xn]].

So if you look at functions in C[[X1, . . . , Xn]] you treat them as their ‘Taylor’ series
around the zero. Therefore C[[X1, . . . , Xn]] describes the local geometry around
the origin in Cn.

More general if R is an affine ring and p is the maximal ideal corresponding to
the point p ∈ V(R) then R̂p will encode the local information around the point
p. This ring will be called the complete local ring around p.

Lemma 1.3. If R is an affine ring over C and p is a maximal ideal then R̂p has
a unique maximal ideal, p̂.

Proof. Clearly, there is a morphism π : R̂p → R/p : (ui) 7→ u0. Because p is
maximal, R/p is C and hence p̂ = Kerπ is also maximal.
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If r = (ri) 6∈ Kerπ then we can write it as c(1 − ε) where c = π(r) ∈ C and
ε = 1− r/c ∈ p̂. The formal sum

u = c−1(1 + ε+ ε2 + . . . )

represents and element in R̂p and ur = 1. So Kerπ contains all non-invertible

elements and hence all proper ideals in R̂p.

Rings with a unique maximal ideal are called local rings, so this is the reason we
speak of the complete local ring.

Note that the formal completion of an affine algebra is not an affine algebra
because it is usually not a finitely generated ring. However, such a ring still has
a nice property: it is Noetherian.

Definition 1.4. Let R be a commutative ring and M an R-module. M is called
Noetherian if every increasing chain of submodules M1 ⊂M2 ⊂ . . . in M becomes
stationary: Mi = Mi+1 if i >> 0, or equivalently every submodule of M is finitely
generated.

A ring R is Noetherian if it is a Noetherian module over itself. In other words
every increasing chain of ideals m1 ⊂ m2 ⊂ . . . becomes stationary: mi = mi+1 if
i >> 0, or equivalently every ideal is finitely generated.

This is a very important property that is often used in commutative ring theory
because it is preserved under many constructions.

Lemma 1.5. If R is a ring then

• every submodule of a Noetherian module is Noetherian

• every quotient module of a Noetherian module is Noetherian

• if N and M/N are Noetherian then M is Noetherian.

Proof. The first statement is trivial because every sequence of submodules of N ⊂
M is a sequence of submodules of M . The second statement follows from the fact
that if (Ui) is an increasing sequence of submodules in M/N and π : M →M/N
is a projection map then π−1(Ui) is an increasing sequence of submodules in M .

Thirdly, if U is a submodule of M then π(U) is a submodule of M/N and hence
finitely generated by y1+N, . . . , yk+N , where we can chose yi ∈ U . If u ∈ U then
we can write u+N = r1(y1 +N) + . . . rk(yk +N) so u = r1y1 + . . . rkyk + n with
n ∈ N ∩ U . Because N is Noetherian, N ∩ U is finitely generated by z1, . . . , zl.
So U is generated by y1, . . . , yk, z1, . . . , zl.
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Note that the last statement implies that M ⊕N is Noetherian if both M,N are.

Lemma 1.6. If R is a Noetherian ring then

• R/i is Noetherian

• R[X] is Noetherian (= Hilbert’s basis theorem)

• R[[X]] is Noetherian

• R̂m is Noetherian.

Proof. If R/i is not Noetherian we have a strictly increasing chain of ideals m1/i ⊂
m2/i ⊂ . . . , which gives rise to a strictly increasing chain of ideals m1 ⊂ m2 ⊂ . . . .

If i is an ideal in R[X], we will show that it is finitely generated. Let f1, f2, · · · ⊂ i

be a sequence of nonzero elements such that fi+1 is an element of i \ (f1, . . . , fi)
with minimal degree. Let ai be the highest coefficient of fi and consider the
ideal a = (a1, a2, . . . ) C R. Because R is Noetherian there is a m ∈ N such that
a = (a1, a2, . . . , am). So am+1 =

∑
rjaj and the element

g = fm+1 −
∑

rjfjX
deg fm+1−deg fj ,

sits in i− (f1, . . . , fm) but has a lower degree than fm+1. By the the minimality
of the degree of fm+1 we have that g = 0 and hence fm+1 ∈ (f1, f2, . . . , fm) =
(f1, f2, . . . , fm+1). Continuing like this we see that i = (f1, f2, . . . , fm).

The proof of the third statement is completely analogous to the second but now
we define deg f to be the smallest nonzero power of X in f(X).

The fourth statement follows from the first and the third statement because the
map R[[X1, . . . , Xm]] 7→ R̂m : f → (f + mi) is surjective.

Note that a subring of a Noetherian ring is NOT necessarily Noetherian (because
a subring is not an ideal). An example of this is R[X,XY,XY 2, . . . ] ⊂ R[X, Y ].

Lemma 1.7. If R is a Noetherian ring then the Noetherian modules are precisely
the finitely generated modules.

Proof. First remark that by definition every Noetherian module is finitely gener-
ated. A module M is finitely generated if it is a quotient R⊕k. If R is Noetherian
then R⊕k is Noetherian so M is also Noetherian.
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Given an R-module M we can also construct M̂m:

M̂m
∼= lim
←
M/miM := {(xi)i∈N|xi ∈M/miM and xi+m

iM = xj+m
iM if i < j},

which has the structure of an R̂m-module by componentwise multiplication

(ri)i∈N(xi)i∈N = (rixi)i∈N.

If φ : M → N is a morphism of R-modules (i.e. φ(rm) = rφ(m)) then there is

also a morphism φ̂ : M̂ → N̂ : (xi)i∈N 7→ (φ(xi))i∈N. This means that there is a
functor

−̂ : Mod−R→ Mod− R̂ : M → M̂.

Where Mod−R stands for the category of all R-modules.

Definition 1.8. A sequence of modules M1
φ→ M2

ψ→ M3 is called exact if
Kerψ = Imφ.

A functor is called exact if it maps exact sequences to exact sequences.

Lemma 1.9. If M1
φ→ M2

ψ→ M3 is exact and M1,M2,M3 are Noetherian then

M̂1
φ→ M̂2

ψ→ M̂3 is exact.

Proof. For the proof we refer to http://pub.math.leidenuniv.nl/~bieselod/

teaching/2013-2014/CommAlg/Lecture8.pdf

Corollary 1.10. If R = C[X1, . . . , Xn]/(f1, . . . , fk) and m = (X1, . . . , Xn) ⊃
(f1, . . . , fk) = f then

R̂m/f = C[[X1, . . . , Xn]]/(f1, . . . , fk)

Proof. We have the following exact sequence of C[X1, . . . , Xn]-modules

C[X1, . . . , Xn]⊕k
·fi→ C[X1, . . . , Xn]→ R.

After completion we get

C[[X1, . . . , Xn]]⊕k
·fi→ C[[X1, . . . , Xn]]→ R̂m/f.

This is again exact because the C[X1, . . . , Xn]-modules are Noetherian. Therefore

the kernel of C[[X1, . . . , Xn]]→ R̂m/f is generated by the fi.

Given a complete local ring we can write it as C[[X1, . . . , Xn]]/(f1, . . . , fk), but it is
possible to simplify this description using automorphisms of the ring C[[X1, . . . , Xn]].
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Lemma 1.11. For every Y1, . . . , Yn ∈ m̂ = (X1, . . . , Xn) C C[[X1, . . . , Xn]] there
is morphism φ of C[[X1, . . . , Xn]] that maps Xi 7→ Yi. This morphism is an
automorphism if and only if

{Y1 + m̂
2, . . . , Yn + m̂

2}

form a basis for m̂/m̂2.

Proof. If r = (ri(X1, . . . , Xn)) ∈ lim←C[X1, . . . , Xn]/m̂i, we define

φ(r) = (ri(Y1, . . . , Yn) + m̂
i).

It is easy to check that this is well defined and a ring morphism. If this morphism
is an isomorphism then φ(m̂) = m̂ because m̂ is the unique maximal ideal in
C[[X1, . . . , Xn]]. This implies that the Yi must induce a basis for m̂/m̂2.

Now suppose that Yi induce a basis then there is an M ∈ GLn(C) such that∑
MijYj = Xi mod m̂

2. This M induces a morphism

φM : C[[X1, . . . , Xn]]→ C[[X1, . . . , Xn]] : Xi →
∑
j

MijXj

and ψ := φ ◦ φM is a morphism for which ψ(Xi) = Xi mod m̂
2. If we can prove

that ψ is an automorphism then both φ and φM are also automorphisms.

Set ε : C[[X1, . . . , Xn]]→ C[[X1, . . . , Xn]] : u 7→ u−ψ(u). If the minimal degree of
u is n then the minimal degree of ε(u) is bigger than n and therefore the sum

χ(u) := u+ ε(u) + ε ◦ ε(u) + ε ◦ ε ◦ ε(u) + . . .

is convergent in C[[X1, . . . , Xn]] and χ ◦ ψ(u) = u.

Corollary 1.12. Given a complete local ring we can write it as

C[[X1, . . . , Xn]]/(f1, . . . , fk),

where (f1, . . . , fk) ⊂ (X1, . . . , Xn)2.

Proof. If fi contains a linear term we can find an automorphism such that fi
becomes a variable and then we can delete it from the generators.

The easiest complete local ring is the ring of formal power series C[[X1, . . . , Xm]]
and therefore we introduce the following definition.
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Definition 1.13. We will call a point p ∈ X smooth if the complete local ring
Ĉ[X]p is isomorphic to a ring of formal power series C[[X1, . . . , Xm]].

If this is not the case then we call the point a singular point or singularity. Two
singular points are called equivalent if their complete local rings are isomorphic.

Singularity theory studies singularities up to this equivalence.

A simple test to check whether two singularities non-isomorphic complete local
rings is to compare their Hilbert series. For a local ring R̂ with maximal ideal m
we define the Hilbert series

hi(R̂) = dimm
i/mi+1.

Clearly if R̂ ∼= Ŝ then both have a unique maximal ideal and their hibert series
will be the same. The converse is not always true: non-isomorphic complete local
rings can have the same Hilbert series. In some cases however the Hilbert series
is enough to determine the complete local ring.

Lemma 1.14. The Hilbert series of R̂ = C[[X1, . . . , Xn]] is

hi(R̂) =

(
n+ i− 1

n− 1

)
.

If a complete local ring C[X]p has the same Hilbert series as C[[X1, . . . , Xn]] then
it is isomorphic to C[[X1, . . . , Xn]].

Proof. hi just calculates the number of monomials of degree i in the polynomial
ring, which is an i-combination with repetitions out of n elements.

To go in the opposite direction assume R̂ is complete local with maximal ideal
m such that h1(R̂) = n. Choose elements Y1, . . . , Yn in m such that the Yi + m

form a basis for m/m2. Note that in this case the Yi + mi generate R̂/mi (this
can easily be proved by induction).

We can define a morphism of complete rings

C[[X1, . . . , Xn]]→ R̂ : (fi)i∈N 7→ (fi(Y1 + m
i, . . . , Yn + m

i))i∈N

which is surjective mod mi. Because the Hilbert series are the same

dimC[[X1, . . . , Xn]]/(X)i = dim R̂/mi,

so the map is also injective mod (X)i. Therefore it is bijective.
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1.3 Tangent spaces and smooth points

Given a point p in a variety X, the local ring Ĉ[X]p can be thought of as the ring

of all power series around p. If we have any function in f ∈ Ĉ[X]p its nth order
Taylor approximation can be seen as f mod pn+1. In particular the linear part
of the function is an element in p/p2. In differential geometry the linear part of
the Taylor expansion is an element of the cotangent space so therefore it makes
sense to define

Definition 1.15. If X is an affine variety and p ∈ X is a point with maximal
ideal pC C[X] then we define the cotangent space and tangent space at p as

T ∗pX =
p

p2
and TpX = (

p

p2
)∗.

(Note that −∗ stands for the dual vector space).

If φ : X → Y is a morphism that maps p to q we have a corresponding map
φ∗ : C[Y] → C[X] with φ∗−1(p) = q. Because φ∗(qi) ⊂ pi, this also gives a map
dφ∗ : q/q2 → p/p2.

Let us look at the case where Y = Cn, C[X] = C[X1, . . . , Xn]/(f1, . . . , fm) and q =
(X1, . . . , Xn). We can identify q/q2 with the vector space Cn by using the basis
dXi := Xi+q2. The inclusion X ⊂ Y gives a surjective map φ∗ : C[X1, . . . , Xn]→
C[X1, . . . , Xn]/(f1, . . . , fm). Therefore dφ∗ will also be surjective and its kernel
will be all those

∑
i αidXi such that∑
i

αiXi + q
2 ∈ φ∗−1

p
2 = q

2 + (f1, . . . , fn).

Because q2 + (f1, . . . , fn) is generated by all degree 2 monomials and the linear
parts of the fj, the kernel of the map dφ∗ is generated by all∑

i

dfj
dXi

(0)dXi.

For the dual space (q/q2)∗ we have the dual basis ∂i (such that ∂i(dXj) = δij).
The vectors in (p/p2)∗ are those linear combinations

∑
i βi∂i that evaluate zero

on Ker dφ∗ so

TpX ∼= {β ∈ Cn|
∑
i

∂fj
∂xi

(p)βi = 0, j = 1, . . . , k}.

This corresponds to the classical definition of the tangent space of an embedded
variety.
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Now look at the Jacobian matrix
∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn


The tangent space at p is the kernel of this matrix evaluated at p, so if the tangent
space in p is k-dimensional then the rank of this matrix is n− k and there is an
n− k × n− k-minor that is nonzero. This means that in an open neighborhood
of p this minor is also nonzero and hence the tangent space in all these points
is at most k-dimensional. The points for which the tangent space has the lowest
dimension form an Zariski-open subset in Smooth ⊂ X. This subset is dense if
X is irreducible. For each point in Smooth there is a n − k × n − k-minor with
nonzero determinant.

Theorem 1.16. Let X be an irreducible variety and p a point in X with maximal

ideal p C C[X]. Then Ĉ[X]p is isomorphic to C[[X1, . . . , Xk]] if and only if the
dimension of the tangent space dim TpX = k is minimal.

Proof. Without loss of generality we can assume the point p to be the zero point
in X ⊂ Cn.

We only show the proof for hypersurfaces. In that case C[X] = C[X1, . . . , Xn]/(f)
where f is an irreducble polynomial without constant term. The Jacobian matrix
in the zero point has either rank one (if f has a linear term) or rank zero (if f
has no linear term).

If f has a linear term, we can do a linear base change in the variables such
that the linear term of f is Xn. By lemma 1.11 there is an automorphism φ of
C[[X1, . . . , Xn]] such that φ(Xi) = Xi if i < n and φ(Xn) = f . Therefore

C[[X1, . . . , Xn]]/(f) ∼= C[[X1, . . . , Xn]]/(Xn) ∼= C[[X1, . . . , Xn−1]].

To go in the opposite direction, suppose that R̂ = C[X1, . . . , Xn]/(f). If f

has no linear term then h1(R̂) = n. So if R̂ is a formal power series ring, it
should be a formal power series ring in n variables. But if f ∈ (X1, . . . , Xn)i \
(X1, . . . , Xn)i+1 then, for the same reason as in the proof of lemma 1.14, hi(R̂) <
hi(C[[X1, . . . , Xn]]).
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2
Hypersurface singularities

2.1 Hypersurfaces and critical points

Recall that a hypersurface is the zero locus of a single polynomial and hence
it corresponds to an affine ring of the form C[X1, . . . , Xn]/(f). Note that a
hypersurface is an irreducible variety if f is an irreducible polynomial.

Given a function f ∈ C[X1, . . . , Xn], we can define a 1-parameter family of hy-
persurfaces Xλ defined by the equations f(X)− λ = 0.

Lemma 2.1. The smooth points of Xλ are those points (ξ1, . . . , ξn) such that

f(ξ) = λ and ∇f(ξ) := (∂f(ξ)
∂X1

, . . . , ∂f(ξ)
∂Xn

) 6= 0.

Proof. This follows straight from the previous chapter.

If ξ ∈ Cn is a point for which ∇f = 0 then ξ will be a singular point of the
variety Xf(ξ).

Definition 2.2. A critical point of f ∈ C[X1, . . . , Xn] is a point ξ such that
∇f(ξ) = 0.

The Hessian of a critical point ξ is the matrix

Hij =

(
∂2f

∂Xi∂Xj

)
ξ

13
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The Hessian defines a bilinear form on the tangent space. If we perform a base
change for the coordinates we get

H ′ij =
∑
k,l

Hkl
∂xk
∂yi

∂xl
∂yj

.

Standard linear algebra shows that we can bring this matrix into a diagonal
matrix with 0, 1′s on the diagonal. (This is Sylvester’s Law of inertia over the
complex numbers, if we work over the real numbers this matrix also can have −1
on the diagonal.) For the function f this implies that after a base change we can
bring f in the form

X2
1 + · · ·+X2

k + r(X) with r(X) ∈ m
3

The number k is the rank of the Hessian.

Definition 2.3. If f ∈ C[X1, . . . , Xn] and ξ is a critical point then the corank of
ξ is c := n− k where k is the rank of the Hessian. A critical point with corank 0
is called non-degenerate and if the corank is nonzero it is called degenerate.

Theorem 2.4. All nondegenerate critical points with the same rank define equiv-
alent singularities.

Proof. We need to show that all rings of the form

C[[X1, . . . , Xn]]/(X2
1 + · · ·+X2

n + g)

with g ∈ (X1, . . . , Xn)3 are isomorphic.

The idea is to perform a change of coordinates Xi = Yi+li with li ∈ (X1, . . . , Xn)2

such that the new g becomes zero. We do this step by step. Suppose we have
found lji mod (X1, . . . , Xn)j such that gj = 0 mod (X1, . . . , Xn)j = 0. Then the
new gj+1 mod (X1, . . . , Xn)j+1 becomes∑

i

2Yil
j+1
i + gj(Y ) mod (X1, . . . , Xn)j+1.

Because all the Yi are present we can easily find lj+1
i to cancel the j-degree term

of gj.

Remark 2.5. A similar proof shows that if the corank is c then we can perform
a transformation such that the local ring looks like

C[[X1, . . . , Xn]]/(X2
c+1 + · · ·+X2

n + g)

with g ∈ (X1, . . . , Xc)
3 ⊂ C[[X1, . . . , Xc]].

Definition 2.6. A function f ∈ C[X1, . . . , Xn] is called a Morse function if it
has only nondegenerate critical points and all critical points have a different value
for f .

14
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2.2 Versal deformations

If C[X1, . . . , Xn]/(f) has a singularity at the origin, we can look at the deforma-
tion theory of this singularity.

Definition 2.7. A formal deformation of f ∈ C[[X1, . . . , Xn]] with base Λ = C` is
a function F ∈ C[[X1, . . . , Xn, λ1, . . . , λ`]] such that

F (x, 0) =: F mod 〈λ1, . . . , λ`〉 = f(x).

We will say that F is a polynomial/holomorphic deformation if F is the formal
power series of a polynomial/holomorphic map F : Cn × Λ→ C.

Note that two functions f1, f2 ∈ C[[X1, . . . , Xn]] are considered equivalent if there
is an automorphism φ ∈ Aut(C[[X1, . . . , Xn]]) such that φ(f1) = f2. Such an
automorphism can also be interpreted as a base change: define gi = φ(Xi) then
φ(f1) = f1(g1, . . . , gn).

Keeping this in mind we say:

Definition 2.8. Two formal deformations F1, F2 are equivalent if there are ele-
ments

gi ∈ C[[X1, . . . , Xn, λ1, . . . , λ`]]

such that gi mod 〈λ1, . . . , λ`〉 = Xi and

F1(g1, . . . , gn, λ1, . . . , λ`) = F2 ∈ C[[X1, . . . , Xn, λ1, . . . , λ`]].

Given a formal deformation F we can construct new deformations by a change
of base space.

Definition 2.9. Let u1, . . . , u` ∈ C[[κ1, . . . , κk]] then the induced deformation F ′

with parameter space K = Ck is

F ′ = F (X1, . . . , Xn, u1, . . . , ul) ∈ C[[X1, . . . , Xn]]⊗ C[[κ1, . . . , κk]].

A deformation F is called versal if every deformation is equivalent to a defor-
mation induced from F . If Λ has the smallest possible dimension of all versal
deformations then the deformation is called miniversal.

Example 2.10. F (x, λ) = x2 + λ is a versal deformation of x2 because every
deformation must look like

G(x, µ) = α(x, µ)x2 + β(µ)x+ γ(µ)

15
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with α(x, 0) = 1, β(0) = γ(0) = 0. Because we are working with power series we
can construct α−1/2 and if we put g(x) = α−1/2x− β(µ)/2α−1/2 we get that

G′(x, µ) = G(g, µ) = x2 + h(µ)

for some function h(µ). Because ` = 1 the deformation is also miniversal.

This example can be generalized to arbitrary hypersurface singularities.

2.3 The Jacobi algebra

Definition 2.11. To a critical point ξ = 0 of f we can associate its Jacobi
algebra.

Jac(f) = C[[X1, . . . , Xn]]/(
∂f

∂X1

, . . . ,
∂f

∂Xn

)

What is the interpretation of the Jacobi algebra? On the ring C[[X1, . . . , Xn]] we
have an action of G = AutC[[X1, . . . , Xn]] and functions that are in the same G-
orbit are considered equivalent. The tangent space space to the orbit G ·f is g ·f ,
where g is the Lie algebra of G. The Lie algebra of the group of automorphism
is the space of derivations because if (1 + εψ) is an automorphism then

(1+εψ)(ab) = (1+εψ)(a)(1+εψ)(b) = ab+ε(ψ(a)b+aψ(b))⇒ ψ(ab) = ψ(a)b+aψ(b)

so ψ is a derivation. Every derivation is characterized by the images ψ(Xi) and
one can calculate that

ψ(f) =
∑
i

ψ(Xi)
∂f

∂Xi

.

These are precisely the elements of the Jacobian ideal, so the Jacobi algebra can
be seen as the normal space to the orbit G · f ⊂ C[[X1, . . . , Xn]].

Lemma 2.12. A critical point is nondegenerate if and only if Jac(f) ∼= C.

Proof. If the critical point is nondegenerate we can assume that f = X2
1 +· · ·+X2

n

and the Jacobi algebra is

C[[X1, . . . , Xn]]/(2X1, . . . , 2Xn) = C

The reverse also holds if Jac(f) = C then the zero is a nondegenerate critical
point because then ( ∂f

∂X1
, . . . , ∂f

∂Xn
) = (X1, . . . Xn). This implies that the linear

terms of ∂f
∂Xj

span 〈X1, . . . , Xn〉, so the Hessian is nondegenerate.

16



CHAPTER 2. HYPERSURFACE SINGULARITIES

Theorem 2.13. Let f ∈ C[X1, . . . , Xn] then 0 is an isolated critical point if and
only if the Jacobi algebra is finite dimensional.

Proof. If f ∈ C[X1, . . . , Xn] then the critical points of f in Cn are defined by the
equations

∂f

∂X1

= 0, . . . ,
∂f

∂Xn

= 0.

Therefore

C[Critf ] = C[X1, . . . , Xn]/

√
(
∂f

∂X1

, . . . ,
∂f

∂Xn

).

0 is an isolated point of C[Critf ] if and only if the completion of this ring at
(X1, . . . , Xn) is isomorphic to C.

This means that

C[[X1, . . . , Xn]]/

√
(
∂f

∂X1

, . . . ,
∂f

∂Xn

) = C

or equivalently if we divide out all nilpotent elements in

Jac(f) = C[[X1, . . . , Xn]]/(
∂f

∂X1

, . . . ,
∂f

∂Xn

)

we get C. The latter is true if and only if this algebra is finite dimensional.
Indeed, suppose that the maximal ideal contains only nilpotent elements then
Xji
i is zero in Jac(f), so all monomials of degree at least j1 + · · · + jn must be

zero because at least one of the Xi must have a power bigger than ji.

On the other hand if Jac(f) is finite dimensional then 1, Xj, . . . , X
r
j must be

linearly dependent for some r. If g(Xj) = 0 and g has 2 nonzero terms then
bringing in front the lowest common power of Xj we get Xk

j (1+. . . ) = 0. Because
(1 + . . . ) is invertible in C[[X1, . . . , Xn]], we have that Xk

j = 0. So all generators
are nilpotent and hence (X1, . . . , Xn) contains only nilpotent elements.

Remark 2.14. In the previous theorem we studied the critical points of f , but
we can also study the singularities of f−1(0), which are the critical points of f
with f = 0. To study these we can study a similar algebra: the Tjurina algebra

Tjr(f) = C[[X1, . . . , Xn]]/(f,
∂f

∂X1

, . . . ,
∂f

∂Xn

).

This algebra has the property that if f ∈ C[X1, . . . , Xn] such that f(0) = 0 then
0 is an isolated singularity if and only if the Tjurina algebra is finite dimensional.

The Jacobi algebra can also be used to construct a versal deformation.
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Theorem 2.15. Let f be a function and choose functions φ1, . . . , φµ ∈ C[[X1, . . . , Xn]]
such that φ̄1, . . . , φ̄µ form a basis for Jac(f) then

f + λ1φ1 + · · ·+ λµφµ

is a versal deformation of f .

Proof. We only sketch the main idea, which is the following. The space of
all functions is C[[X1, . . . , Xn]] and on this space we have an action of G =
AutC[[X1, . . . , Xn]]. A deformation corresponds to a map Λ → C[[X1, . . . , Xn]]
which maps the zero to f . A deformation can be induced from another defor-
mation if near f the orbits hit by the former are also hit by the latter, so a
deformation is versal if it hits all orbits near f . The image of Λ can also be
chosen transversal to the orbit of f because directions that stay in the orbit of f
are unnecessary. The Jacobi algebra can be seen as the normal space to the orbit
G · f . If we choose representatives for the basis elements of Jac we can map Jac

to C[[X1, . . . , Xn]] and the image will be transversal to G · f .

Further details can be found in [?].

2.4 Multiplicity and modality

Definition 2.16. We call µ := dimC Jac(f) the multiplicity or Milnor number
of the critical point.

The name multiplicity comes from the following lemma. If we look at a deforma-
tion f + λg where g = s1X1 + · · · + snXn is linear, the critical points of f + λg
are solutions to

∂f

∂Xi

− λsi.

We can express the locations of these critical points in terms of λ. If we let λ
approach zero then some of these critical points will move to the zero and become
one critical point for f . If we reverse the film the critical point of f breaks up in
a number of critical points of f + λg.

Lemma 2.17 (Milnor). If µ < ∞ then for almost all (s1, . . . , sn) ∈ Cn the
critical point for f at x = 0 breaks up in µ critical points for f + λg. These new
critical points are nondegenerate.

Example 2.18. Consider f(X, Y ) = X3 + Y 3 then the multiplicity is

dimC C[X, Y ]/(3X2, 3Y 2) = 4.

18
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If we deform f(X, Y ) = X3 +sX+Y 3 + tY we see that there are 4 critical points
(±
√
−s/3,±

√
−t/3).

Corollary 2.19. If a singular point with multiplicity µ breaks down in smaller
singularities, the sum of the multiplicities of the smaller singularities is equal to
µ

Now look at a versal deformation f+g = f+λ1g1+· · ·+λµgµ of f coming from the
Jacobi algebra. If we deform the function several things can happen. If g has a
constant term then f+g will become invertible and the ring C[[X1, . . . , Xn]]/(f+g)
will be zero. If this happens the deformed hypersurface moves away from the zero.

A second thing that can happen is that 0 stays on the surface but it becomes a
smooth point. For this to happen, g should have no constant term but a nonzero
linear term. These form a µ− 1-dimensional subspace of Jac(f).

The last case happens when 0 stays a singularity. Then both the constant and
the linear terms have to be zero. If the rank of the Hessian is k then k of the
generators of the Jacobian ideal will have a linear term. So using the relations
we can already make k of the n linear terms in g zero. To make the others zero
we have to impose c = n − k conditions so the g which have a vanishing linear
term will form a µ− c− 1-dimensional subspace of Jac(f).

This µ−c−1-dimensional space can further be broken down in smaller spaces, an
open part of it will contain the deformations that have a nondegenerate singularity
the zero (those are the ones for which the quadratic terms do not vanish. Then
we can look at the strata containing singularities with multiplicities 2, 3, . . . . The
highest multiplicity that can occur is that of the original singularity itself because
of corollary 2.19.

Definition 2.20. The modality of a critical point ξ = 0 of f is the dimension of
the stratum in the miniversal deformation for which fλ has the same multiplicity
as f :

m(f) = dim{λ|µ(fλ) = µ(f)}
Example 2.21. We will determine the modality of X2 +Y n. The Jacobi algebra
is

Jac(X2 + Y n) = C[[X, Y ]]/(2X,nY n−1)

which has as a basis 1, Y, . . . , Y n−2, so µ = n− 1. The Jacobi algebra of

Jac(X2 + Y n + an−2Y
n−2 + · · ·+ a0)

= C[[X, Y ]]/(2X,nY n−1 + (n− 2)an−2Y
n−3 + . . . )

= C[[X, Y ]]/(2X, aiY
i−1)

where i is the smallest number such that ai 6= 0. So µ(X2 + Y n + an−2Y
n−2 +

· · ·+ a0) = n− 1 if and only if all ai are zero. Therefore the modality is 0.
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The modality of a critical point describes the number of parameters of the family
this critical point is part of. It is an important invariant because it is possible to
classify singularity with a small modality. Singularities with modality 0,1,2 are
called simple, unimodal and bimodal.

We end this chapter with an important result: the classification of the simple
singularities.

Theorem 2.22 (Arnol’d). Let R̂ be the local ring of a simple hypersurface sin-

gularity of dimension 2 then R̂ is isomorphic to C[[X, Y, Z]]/(f) with f equal to
one of the following polynomials

An, n ≥ 1 Dn, n ≥ 4 E6 E7 E8

XY − Zn+1 X2 + Y 2Z + Zn−1 X2 + Y 3 + Z4 X2 + Y 3 + Y Z3 X2 + Y 3 + Z5

These singulaties are called the Kleinian singularities or Du Val singularities. In
higher dimensions the classification is the same only now f has extra terms of
the form X2

i for the extra variables.

Remark 2.23. For Dn we assumed that n ≥ 4 because D1 gives the zero ring,
D2 gives Z = −X2(1 + Y 2)−1 so the ring R̂ = C[[X, Y ]] is smooth, and finally
D3 is the same singularity as A3 (perform the change of variables X ′ = X, Y ′ =
Y/
√

2, Z ′ = Z + Y 2/2).

The proof of this theorem is beyond the scope of these notes. It can be found in
the book [?]. In the following chapters we will study these singularities in detail
and see how this classification fits in the bigger picture of modern mathematics.
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3
Quotient singularities

3.1 Quotients and rings of invariants

Suppose we have a finite group G and let V be a finite dimensional representation
with dimension k. This gives a map ρV : G→ GL(V ) and we write g ·v for ρV (g)v.
For every point v ∈ V we can define the orbit G · v := {g · v|g ∈ G}. Orbits never
intersect so we can partition V into its orbits. We will denote the set of all orbits
by V/G.

Because V itself is an affine variety, a natural question one can ask is whether
the set V/G can also be given the structure of an affine variety. In the case
of finite groups this will be possible, but for general groups there will be extra
complications.

We can take a closer look at the problem by looking at the algebraic side of the
story. The ring of polynomial functions over V is R = C[V ] ∼= C[X1, . . . , Xk] is a
graded polynomial ring if we give the Xi degree 1.

On R we have an action of G:

G× C[V ]→ C[V ] : (g, f) 7→ g · f := f ◦ ρV (g−1).

This action is linear and compatible with the algebra structure: g · f1f2 = (g ·
f1)(g · f2). As g · Xi :

∑
j ρV (g−1)ijXj is homogeneous of degree 1 the G-action

maps homogeneous elements to homogeneous elements with the same degree.
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The ring R contains a subring consisting of the invariant functions

S := RG = {f ∈ R|g · f = f}

If the group G is finite we can turn every function into an invariant one:

Definition 3.1. The Reynolds operator is the projection map

% : R→ S : f(x) 7→ 1

#G

∑
g∈G

g · f.

This map is not a morphism of rings but it is a morphism of C[V ]G-modules
(check this).

Theorem 3.2. If G is a finite group and V a finite dimensional representation
then the ring of invariants S = C[V ]G is finitely generated.

Proof. To prove that S is finitely generated, we first prove that this ring is Noethe-
rian. Suppose that

a1 ⊂ a2 ⊂ a3 ⊂ · · ·
is an ascending chain of ideals in S. Multiplying with R = C[V ] we obtain a
chain of ideals in R:

a1R ⊂ a2R ⊂ a3R ⊂ · · · .
This chain is stationary because R is a polynomial ring and hence Noetherian.
Finally, %(aiR) = ai%(R) = aiS = ai so the original chain must also be stationary.

Now let S+ denote the ideal of S generated by all homogeneous elements of
nonzero degree. Because S is Noetherian, S+ is generated by a finite number of
homogeneous elements: S+ = f1S + · · · + frS. We will show that these fi also
generate S as a ring.

Now S = C + S+ so S+ = Cf1 + · · · + Cfr + S2
+, S2

+ =
∑

i,j Cfifj + S3
+ and by

induction
St+ =

∑
i1...it

Cfi1 · · · fit + St+1
+ .

So C[f1, . . . , fr] is a graded subalgebra of S and S = C+S+ = C[f1, . . . , fr] +St+
for every t. If we look at the degree d-part of this equation we see that

Sd = C[f1, . . . , fr]d + (St+)d.

Because St+ only contains elements of degree at least t, (St+)d = 0 if t > d. As
the equation holds for every t we can conclude that

Sd = C[f1, . . . , fr]d and thus S = C[f1, . . . , fr]
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Now because S is finitely generated and does not have nilpotent elements, it
corresponds to a variety V(S) and the embedding S ⊂ R gives a map

π : V(R)→ V(S) : m 7→ π(m) = m ∩ S

which is a surjection because if s is a maximal ideal in S then sR is not equal to
R. Indeed if sR = R then s contains an element sthat is invertible in R. Just
like s this inverse s−1 must also be invariant and hence it sits in S, which would
imply that s = S. Therefore sR will be contained in at least one maximal ideal
m C R, so π(m) = s. Furthermore if m C R then m ∩ S = g · m ∩ S so points of
V(R) in the same orbit are mapped to the same point in V(S).

Vice versa if we have two disjoint orbits Gp and Gq, we have a finite number of
points in V and using interpolation we can construct a polynomial f which assigns
to all points in Gp the value 0 and to all points in Gq the value 1. The polynomial
%(f) will sit in S and will map the orbits Gp and Gq to different complex numbers
so these two orbits must correspond to different points in V(S).

In this view it makes sense to define

Definition 3.3. If V is a finite dimensional representation of a finite group G
then the quotient variety V//G is the spectrum of the ring of invariants.

V//G := V(C[V ]G).

The points in V//G are in one-to-one correspondence with the orbits in V .

For more general (infinite) groups we can still define the ring C[V ]G but some-
times this ring is not finitely generated. There is a special type of groups called
reductive groups, for which C[V ]G is finitely generated. Many well known groups
are reductive GLn(C), SOn(C), . . . but (Z,+) is not reductive.

For a reductive group it makes sense to define V//G := V(C[V ]G) and there is a
natural map π : V → V//G coming from the embedding C[V ]G ⊂ C[V ]. This map
has a universal property

Lemma 3.4. If φ : V → X is a morphism in Aff− var such that ∀g ∈ G :
φ(g · x) = φ(x) then there is a morphism φ̃ : V//G→ X such that φ = φ̃ ◦ π. (So
in words every morphism in the category of affine varieties that kills the action
factors through this map.)

Proof. If the map φ∗ := C[X] → C[V ] kills the action then the image of φ∗ is in
C[V ]G so we see φ∗ as the composition of a map that has target C[V ]G with the
embedding C[V ]G ⊂ C[V ].
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For this reason the map π : V → V//G is called the categorical quotient : it
is the best map in the category of affine varieties that factors out the action.
Note however that unlike in the finite group case, the points are not in 1-1
correspondence with the orbits. This is because it is possible that 2 orbits can
have intersecting closures. If that is the case these two orbits must be mapped to
the same point under π because π is continuous. Therefore V//G only classifies
the closed orbits.

A simple example of this phenomenon is the C∗-action on V = Cn by multipli-
cation. This gives a C∗-action on C[V ] and the only invariant functions are the
constant functions. The categorical quotient, V//C∗ = V(C), is just one point be-
cause there is only one closed orbit: the zero point. All other orbits have the zero
point in their closure. So sometimes the categorical quotient does not provide
enough information and one needs to construct other quotients.

3.2 Finite subgroups of SL2(C)

In this section we will classify some finite groups that will be important in the
study of singularity theory.

Theorem 3.5. Every finite subgroup of SL2(C) can be conjugated to one of the
following groups:1

An a cyclic group Cn+1 with order n+ 1 generated by
[
e

2πi
n+1 0

0 e
−2πi
n+1

]
Dn The binary dihedral group BDn−2 with order 4(n−2) generated by

[
e
πi
n−2 0

0 e
−πi
n−2

]
and [ 0 1

−1 0 ].

E6 The binary tetrahedral group BT with order 24.

E7 The binary octahedral BO group with order 48.

E8 The binary icosahedral BI group with order 120.

Proof. First note that if G is a finite subgroup of SL2(C) we can conjugate it to a
subgroup of SU2. To prove this we can define a hermitian form on C2 as follows:

〈v, w〉 :=
1

#G

∑
g∈G

(g · v)(g · w)†

1The numbering of the cases will become apparent later in the notes
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The action of G keeps this form invariant: 〈hv, hw〉 =
∑

g∈G(gh · v)(gh · w)† =
〈v, w〉, so if we choose an orthonormal basis for this form G will act as unitary
matrices according to this basis.

The group SU2 can be mapped onto SO3(R). Embed R3 in mat2(C) as the sub-
space of traceless antihermitian matrices H

R [ 1 0
0 −1 ] + R [ 0 i

i 0 ] + R [ 0 1
−1 0 ] .

On this subspace we can put a scalar product 〈A,B〉 := Tr(AB†). SU2 acts on
this subspace by conjugation and the conjugation respects the scalar product: 〈U ·
A,U · B〉 = Tr(UAU−1(UBU−1)†) = Tr(UAU−1(UBU−1)†) = Tr(UAB†U−1) =
Tr(AB†). Therefore the action of SU2 on H factors through the orthogonal group
of 〈, 〉. As SU2 is connected the image of SU2 will be contained in SO3.

One can check that the kernel of this map is {1,−1} ⊂ SU2 and as the real
dimension of SU2 and SO3(R) are both 3 the map will be surjective. SU2 is called
the double cover of SO3.

Now we will show that any finite subgroup of SO3 is either a cyclic group Cn, a
dihedral group Dn or one of the symmetry groups of a Platonic solid.

Let G be a finite subgroup of SO3 with order n. The elements of G \ {1} are
rotations so we can associate to each element its poles i.e. the intersection points
of the rotation axis with the unit sphere. Let P be the set of poles of elements
of G. Every pole is mapped to a pole under the action of G. So we can partition
P into orbits of G. To every pole p we can associate mp, the number of rotations
with this pole. If we assume that every point is a pole of the trivial rotation,
then mp is also the order of the subgroup of G that fixes p. Note that poles in
the same orbit have the same mp.

The n − 1 non-trivial rotations in G consist of mp − 1 rotations for each pair of
poles. That is 1

2
(mp − 1) n

mp
for each orbit because an orbit has n/mp poles and

every rotation has 2 poles. Hence n− 1 = 1
2
n(
∑ (mp−1)

mp
) where the summation is

over the orbits in P . Since mp ≥ 2 we have (mp − 1)/mp > 1/2 and so we can
only have 2 of 3 orbits if G is non-trivial.

1. The case of two orbits. Suppose these have n/m1 and n/m2 elements. Then
2/n = 1/m1 +1/m2 implies n/m1 = n/m2 = 1 and we have two orbits with
one pole in each. This is the case when G is a cyclic group Cn generated by
rotation by 2π/n.
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2. The case of three orbits. Then 1 + 2/n = 1/m1 + 1/m2 + 1/m3 so one of
the mi = 2. Take m3 = 2 so 1/m1 + 1/m2 = 1/2 + 2/n. There are only a
few possibilities:

• m1 = 2,m2 = m,n = 2m (This is the dihedral case G = D2n =
〈X, Y, Z|X2 = Y m = Z2 = XY Z = 1〉)

• m1 = 3,m2 = 3, n = 12 (This is the symmetry group of the tetrahe-
dron, G = T = 〈X, Y, Z|X3 = Y 3 = Z2 = XY Z = 1〉)

• m1 = 3,m2 = 4, n = 24 (This is the symmetry group of the cube,
G = O = 〈X, Y, Z|X3 = Y 4 = Z2 = XY Z = 1〉)
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• m1 = 3,m2 = 5, n = 60 (This is the symmetry group of the dodecahe-
dron G = I = 〈X, Y, Z|X3 = Y 3 = Z2 = XY Z = 1〉)

Now let G̃ be a subgroup of SU2. If G̃ has an even number of elements then
it contains −1, because this is the only element in SU2 of order 2. This means
that G̃ is the inverse image of a finite subgroup of SO3, these are called the
binary dihedral, tetrahedral, etc. groups, note that binary cyclic is again cyclic.
These groups can be expressed in generators and relations by introducing a new
generator T that commutes with all others and T 2 = 1, the relations of the
original group are then put equal to T instead of one.

• the binary dihedral case G = BDn = 〈X, Y, Z|X2 = Y m = Z2 = XY Z =
T, T 2 = 1〉

• the binary tetrahedral case G = BT = 〈X, Y, Z|X3 = Y 3 = Z2 = XY Z =
T, T 2 = 1〉

• the binary octahedral case G = BO = 〈X, Y, Z|X3 = Y 4 = Z2 = XY Z =
T, T 2 = 1〉

• the binary dodecahedral case G = BI = 〈X, Y, Z|X3 = Y 3 = Z2 = XY Z =
T, T 2 = 1〉

If G̃ has an odd number of elements then it is isomorphic to its image, which
must be cyclic because all other subgroups of SO3 have even order.
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3.3 Kleinian singularities as quotient singulari-

ties

In this section we will determine generators and relations for the rings of invari-
ants C[V ]G.

Theorem 3.6. Let G be a finite subgroup of SL2(C) and V = C2 its standard
representation then the ring of invariants C[V ]G is isomorphic to

C[X, Y, Z]/(f)

where f is

An XY − Zn+1 if G ∼= Cn+1,

Dn Xn−1 −XY 2 + Z2 if G ∼= BDn−2,

E6 X4 + Y 3 + Z2 if G ∼= BT,

E7 X3Y + Y 3 + Z2 if G ∼= BO,

E8 X5 + Y 3 + Z2 if G ∼= BI.

In other words the quotient varieties of finite subgroups of SL2(C) are precisely
the Kleinian singularities.

Proof. In order to prove this we use the Reynolds operator,

%(f) =
1

|G|
∑
g∈G

f g.

This map is a projection %2 = % and it is the identity operation on C[V ]G. So to
get a basis for the ring of invariants we can look at the set of images of all the
monomials in C[V ].

%X iY j.

We will only work out the case for An, the computations for the other groups are
best done using a computer algebra package like GAP. If g is the generator of the
cyclic group then g ·X = ζX, g · Y = ζ−1Y with ζ = e2πi/n+1. Therefore

%X iY j =
1

n+ 1

n∑
k=0

gk ·X iY j

=
1

n+ 1

n∑
k=0

ζk(i−j)X iY j

=

{
0 i 6= j mod n+ 1

X iY j i = j mod n+ 1
.
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From this one can deduce that all invariants are generated by Xn+1, Y n+1 and
XY . We get a surjective map

π : C[X, Y, Z]→ C[X, Y ]G : f(X, Y, Z) 7→ f(Xn+1, Y n+1, XY ).

The kernel of this map clearly contains XY −Zn+1. The dimension of the quotient
space must be two because the map C2 → V//G has finite fibers. If the ideal were
generated by more than one generator, the corresponding variety would not be
two-dimensional.

3.4 The skew group ring

Now that we have identified the Kleinian singularities as quotient singularities,
we can use the group action to embed the ring of invariants into a bigger non-
commutative algebra. The action of G on a vector space V gives rise to an action
on the polynomial ring C[V ]. Similar to the group algebra we can now construct
the skew group ring.

Definition 3.7. The skew group ring or smash product consists of all C[V ]-linear
combinations of group elements

C[V ] ? G = {
∑
g∈G

fgg|fg ∈ C[V ]}

We can define a product on this vector space

fgg · fhh = (fg(g · fh))gh,

and linearly extend it to the whole vector space. In this expression the (g · fh)
denotes the action of g on fh ∈ C[V ].

The center of this algebra can be easily determined: if z =
∑

g fgg ∈ Z(C[V ]?G)
then

∀f ∈ C[V ] : [z, f ] =
∑
g

fg(f − g · f)g = 0 and ∀h ∈ G : [z, h] =
∑
g

(h · fg− fg)gh

The first equation implies that fg = 0 if g 6= 1 and the second implies that f1

must be a G-invariant function so we can conclude that

Lemma 3.8. Z(C[V ] ? G) ∼= C[V ]G.

The algebra A = C[V ] ? G has a natural grading that assigns degree 1 to X and
Y and degree 0 to all group elements. The degree 0 elements form a subalgebra
A0. This algebra is isomorphic to the group algebra CG.
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Theorem 3.9 (Artin-Wedderburn). A0 = CG is a direct sum of ni × ni matrix
algebras, where the ni are the dimensions of the simple representations of G.

CG ∼=
k⊕
i=1

matni×ni(C)

Proof. The proof can be found in every book on representations of finite groups.

This isomorphism provides a basis of the form Ei
rs which are the elementary

matrices in the ith block with a 1 on the r, s-entry and zero everywhere else.

Now let e =
∑

iE
i
11 denote the element that corresponds to the matrix having

a 1 in the upper left corner for each representation and zeros everwhere else.
This element is the sum of k idempotent elements Ei

11, which we denote by
e1, . . . , ek. Each of these corresponds to a unique simple representation of G.
These representations can be seen as Wi

∼= CGei The ei also have the property
that for a CG-representation W the dimension of the subspace eiW is the same
as the multiplicity of Wi inside W . Another important property is that the
ideal generated by e is the full group algebra, CGeCG = CG, this is because
matrix algebras have no proper ideals and e has a nonzero value in every matrix
component of CG. Given the algebra A = C[V ] ? G, we look at the subspace
Π := eAe. This space is again an algebra but its unit element is now e instead
of 1. This algebra is smaller than A but it still keeps the same information.

Theorem 3.10. A and eAe are Morita equivalent.

Proof. AeA = A because CGeCG = CG.

So instead of looking at the representations of A we can consider representations
of Π. Π has the advantage that it is an algebra over eCGe = C⊕k so it is the
quotient of a path algebra of a quiver.

3.5 McKay Quivers

To apply the theory to the situation we’re interested in, we need an explicit
description of Π in terms of its quiver and its relations.

Because Π = eAe and e is a direct sum of elementary matrices, one for each
simple representation, The vertices of the quiver for Π will correspond to the
simple representations of G.
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Because A is generated by A1 as an algebra over A0 = CG and AeA = A, the
algebra Π will be generated by eA1e. The arrows will correspond to generators
of eA1e, these sit inside the degree 1 part: A1 = V ⊗ CG = (CX + CY )CG.

For every couple idempotents ei, ej we can choose a basis for the subspace ei(CX+
CY )CGej ⊂ C[V ] ? G. The union of all these bases forms a basis {a1, . . . , al}
for the space eA1e. We can now construct a quiver QG with vertices the set
{e1, . . . , ek} and as arrows {a1, . . . , al}. If the arrow a` sits in ei(CX +CY )CGej
then we let it run from ej to ei: h(a`) = ei, t(a`) = ej.

Lemma 3.11. The dimension of ei(CX + CY )CGej is the multiplicity of the
simple representation Wi inside (CX + CY )⊗Wj.

Proof. From the representation theory of finite groups, we know that CG is iso-
morphic to

⊕
i EndC(Wi). The element ei is an idempotent in EndC(Si) that

projects the representation Si onto a one-dimensional subspace and acts as zero
on the other simple representations. Therefore if W is any representation, the
dimension of eiW will be the multiplicity of Si inside W . On the other hand it
is easy to check that CGej is isomorphic to Wj as a G-representation.

Definition 3.12. Let V be a vector space and G be a finite subgroup of GL(V ).
The McKay quiver of (G, V ) is the quiver of which the vertices correspond to
the simple representations of G and the number of arrows from Wj to Wi is the
multiplicity of Wi inside V ⊗Wj.

Theorem 3.13. The McKay quiver of the G ⊂ SL2(C) looks as follows. In the
vertices we have put the dimensions of the corresponding representations of G.
We put a square around the vertex corresponding to the trivial representation.

Ãn
1

,,

vv

1ll

��
1

66

��

#o = n+ 1 1

SS

vv
1

SS

1

66

if G ∼= Cn+1,

D̃n

1

��

1

vv
2

''

vv

VV

2gg
''
2gg

''
2gg

66

��
1

66

1

VV

if G ∼= BDn−2,
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Ẽ6

1

��
2

��

GG

1
''
2

''
gg 3

''
gg

GG

2
''

gg 1gg

if G ∼= BT,

Ẽ7

2

��
1

''
2

''
gg 3

''
gg 4

''
gg

GG

3
''

gg 2
''

gg 1gg

if G ∼= BO,

Ẽ8

3

��
1

''
2

''
gg 3

''
gg 4

''
gg 5

''
gg 6

GG

''
gg 4

''
gg 2gg

if G ∼= BI.

Proof. We only do the An case. Cn+1 is a cyclic group generated by g. It has
n+ 1 simple one-dimensional representations corresponding to the n+ 1th roots
of 1. χSk(g) = e2kπi/n+1. V = W0 ⊕Wn and Wi ⊗Wj = Wi+j where the sum is
modulo n+ 1. The representation V is isomorphic to W1 ⊕W−1 so every vertex
is connected to two others and the McKay quiver looks like:

1
,,

vv

1ll

��
1

66

��

#o = n+ 1 1

SS

vv
1

SS

1

66

If we forget about the orientations of the arrows in Q and treat a pair of ar-
rows that run in opposite directions as an edge, we get a graph. These graphs
are known as the (simply laced) extended Dynkin diagrams. They look like the
ordinary Dynkin diagrams but have one extra node. This node corresponds
to the trivial representation. The extended Dynkin diagrams are denoted by
Ãn, D̃n, Ẽ6,7,8. Note that the subscript is one less than the number of nodes in
the extended Dynkin diagram.
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3.6 Preprojective algebras

Given a quiver Q we define the double quiver Q̄ as the quiver with the same
vertices and arrows as Q but for each arrow a ∈ Q1 an extra arrow a∗ in the
opposite direction (h(a∗) = t(a) and t(a∗) = h(a)).

In the path algebra of a double quiver we can define a special element in Π:

ω :=
∑

aa∗ − a∗a

where the sum runs over the arrows in Q.

Definition 3.14. The preprojective algebra of Q is the quotient of the path
algebra of the double quiver Q̄ by 〈ω〉:

Π(Q) =
CQ̄
〈ω〉

.

If λ ∈ CQ0 , the deformed preprojective algebra is defined as

Πλ(Q) =
CQ̄

〈ω −
∑

v∈Q0
λvv〉

.

The representation theory of this algebra highly depends on the quiver.

Theorem 3.15 (Crawley-Boevey). The algebra Πλ(Q) is

• finite dimensional if Q is a quiver whose underlying graph is a Dynkin
diagram,

• infinite dimensional but Noetherian if Q is a quiver whose underlying graph
is an Extended Dynkin diagram.

• non-Noetherian otherwise.

Proof. See [?].

Theorem 3.16. If G is a finite subgroup of SL2(C) and V = C2 then

eC[V ] ? Ge ∼= Π(Q)

where Q is a quiver whose underlying graph is the corresponding extended Dynkin
diagram.
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Proof. We only do the proof for An. In that case Π is isomorphic to C[X, Y ] ? G
because all representations are one-dimensional. The McKay quiver is a cycle:
The unstarred arrows are the clockwise arrows and correspond to eiXei+1 while
the starred arrows are the anticlockwise and correspond to ei+1Y ei. The element
(XY −Y X) in C〈X, Y 〉?G is precisely ω and evaluates to zero in C[X, Y ]?G, so
so there is a surjective map CQ/〈ω〉 → C[X, Y ] ? G. To show that it is bijective
one can compare the dimensions of the degree k-components of CQ/〈ω〉 and Π.

The degree k component of Π is C[X, Y ]k ? G which has dimension (k + 1)|G|.
The degree k component of CQ consist of all paths of length k in each vertex
you can leave either via a starred or an unstarred arrow. The relation eiω =
eiXei+1ei+1Y ei−eiY ei−1ei−1Xei allows us to swap stars, so we can put all stars at
the beginning. For each vertex there are at most k+1 paths of length k (depending
on the number of starred arrows). As there are |G| vertices the dimension of the
dimension of CQ/〈ω〉n is at most (k + 1)|G|. Therefore CQ/〈ω〉 → Π must be a
bijection in each degree.
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4
Resolutions of Singularities

4.1 Graded Rings

A ring R is graded if it can be written as a direct sum

R = R0 ⊕R1 ⊕ . . .

such that RiRj ⊂ Ri+j. Recall that by an infinite direct sum R =
⊕∞

i=0Ri

we mean that every element in R can be written in a unique way as as sum
r =

∑∞
i=0 ri with ri ∈ Ri and only a finite number of ri are nonzero. An element

r is called homogeneous of degree i if it sits in Ri.

Rings can often be graded in different ways. If R = C[X1, . . . , Xn] we can assign
to each Xi a degree ni and then we put Ri = 〈Xe1

1 . . . Xen
n |e1n1 + · · ·+ ennn = i〉,

so Ri is spanned by all monomials of degree i.

An ideal m of a graded ring R is called graded if m =
⊕∞

i=0 mi with mi = Ri ∩m.
Note that if m is graded then R/m is also graded with (R/m)i = Ri/mi. By
definition a graded ideal is generated by homogeneous elements, and the converse
is also true: if the generators r1, . . . , rk are homogeneous with degrees e1, . . . ek
then mi = Ri−e1r1 + . . . Ri−ekrk

This makes it easy to construct graded rings: we can write them as quotients

R = C[X1, . . . , Xn]/(r1, . . . , rk)
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where the ri are homogeneous polynomials for the grading induced by the degrees
we assign to the Xi.

Now suppose that all variables of the graded ring R have degree 1. The affine
variety of this ring, V(R), wil consist of lines through the origin because if
ri(X1, . . . , Xn) is homogeneous then ri(λX1, . . . , λXn) = λdeg riri(X1, . . . , Xn).
This means that V(R) is a cone with the origin as its top.

The converse also holds if X ⊂ Cn is a cone through the origin, we can define a
group action of C∗ on X by scaling:

C∗ × X→ X : (λ, x) 7→ λx

This action also gives an action on C[X]:

C∗ × C[X]→ C[X] : (λ, f(x)) 7→ f(λx)

To turn C[X] into a graded ring we define

C[X]i := {f ∈ C[X]|f(λx) = λif(x)}.

4.2 Non-affine varieties

Up until now we have only seen affine varieties, however one can construct far
bigger class of varieties by gluing affine varieties together. We will not attempt
to formulate a complete abstract definition of an algebraic variety but the main
idea is that if V is a variety we can see it as the union of some affine varieties
that are identified on affine Zariski-open subsets. More precisely we have affine
varieties Vi and affine embeddings ιij : Vij ⊂ Vi such that Vij = Vji and the
images ιijVij are zariski open subsets of Vi. The full variety V is then defined as

V =
⋃
i

Ṽi/ ∼,

where xi ∼ xj for xi ∈ Vi if ιijxi = ιjixj. A map between two such varieties is
a morphism of varieties if the maps between the restrictions to the affine open
subsets are morphisms of affine varieties.

The simplest example is Pn, which is the set of lines through the origin in Cn+1

{C(x0, . . . , xn)|∃i : xi 6= 0}.

Each line is considered as a point in projective space which we denote by (x1 :
· · · : xn+1). The coordinates of the point are defined up to a scalar. We can cover
Pn by n+ 1 affine spaces

A(i)
n = {(x0 : · · · : xn)|xi 6= 0} ∼= Cn = {x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xm
xi
}.
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Just like for affine varieties we can make subvarieties by looking at the zeros of
polynomials, but to be well defined these polynomials must be homogeneous i.e.
f(λX1, . . . , λXn+1) = λkf(X1, . . . , Xn). This is because we want that the full
line through the origin in Cn+1 is zero for f or not. This can be formalized by
the proj construction.

IfA = C[Y1, . . . , Yn]/(r1, . . . , rk) is a positively graded ring generated by Y0, . . . , Yn
with degree 1 then the variety V(A) ⊂ Cn+1 is a union of lines through the ori-
gin and the points at infinity through these lines form a subset of Pn, which we
denote by

PA := {(y0 : · · · : yn) ∈ Pn|ri(y0, . . . , yn) = 0}.

Such varieties are called projective varieties.

Using the P-construction we can also make a mixture between affine and projec-
tive varieties nl. the quasi-projective varieties. If A = A0⊕A1⊕. . . is a positively
graded ring generated by X1, . . . , Xn with degree 0 and Y0, . . . , Ym with degree 1
and let r1, . . . rp the homogeneous relations between the generators, then we can
define a subset

PA := {(x1, . . . , xn, y0 : · · · : ym) ∈ Cn × Pm|ri(x1, . . . , xn, y0 : · · · : ym) = 0}

This set is well defined because if ri is of degree d then

ri(x1, . . . , xn, λy0, . . . , λym) = 0⇔ λdri(x1, . . . , xn, y0 : · · · : ym) = 0.

Now we can cover PA by affine open subset Vi corresponding to the locus where
yi is nonzero:

Vi = {(x1, . . . , xn,
y0

yi
, . . . ,

yi−1

yi
,
yi+1

yi
, . . . ,

ym
yi

)|(x1, . . . , xn, y0 : · · · : ym) ∈ PA}

Note that the coordinate ring of each affine part is the degree zero part obtained
after inverting the ith coordinate: C[Vi] = A[y−1

i ]0 (Note that y−1
i has degree

−1). Furthermore C[Vi ∩ Vj] = A[y−1
i , y−1

j ]0 so PA consist of affine varieties Vi

glued together by identifying affine Zariski-open subsets Vi ∩ Vj
1.

The variety PA can be mapped to the affine variety V(A0) by the ordinary pro-
jection

(x1, . . . , xn, y0, . . . , ym) 7→ (x1, . . . , xn)

and each of the fibers is a projective variety.

It is important to remark that unlike in the affine case, non-isomorphic graded
rings can give rise to the same quasiprojective variety. The standard example

1If A is not only generated by elements in degree 0,1 it is still possible to define PA abstractly
as the glueing of the Vi = V(A[y−1

i ]0), where deg yi 6= 0.
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of this phenomenon is the conic and the projective line. Consider the rings
R = C[X, Y ] and S = C[X, Y, Z]/(XY − Z2) where all variables have degree 1.
PR can be seen as the projective line, while PS is the projective conic. These
graded rings are not isomorphic because dimR1 = 2 and dimS1 = 3 (they are
even not isomorphic as rings). There is however a bijective morphism

PR→ PS : (x : y) 7→ (x2 : y2 : xy).

One of the advantages of working with projective varieties is that it is possible
to construct varieties that behave like compact spaces. Note that over C every
affine variety that is not a finite number of points, is noncompact for the standard
complex topology. This is because the solutions to polynomials in Cn always form
a nonbounded set. The space Pn however is compact for the standard complex
topology, so all closed subsets of Pn are compact. In particular this means that
PA is compact if A is generated by elements of degree 1. If A also has generators
of degree 0, PA need not to be compact but the fibers of the standard map
PA→ V(A0) are all compact. A map for which the preimage of a compact set is
compact is called a proper map.

4.3 Resolutions of singularities

With all this in mind we can introduce the concept of a resolution of a singularity:

Definition 4.1. If V is a singular irreducible variety then a morphism of varieties
π : W→ V is a resolution of V if

R1 π is a surjection,

R2 π is a proper map,

R3 π is almost everywhere one-to-one: there are open subsets UV ⊂ V and
UW ⊂W such that π|UW is an isomorphism between UW and UV,

R4 W is an irreducible smooth variety.

The locus of W for which π is not one-to-one a called the exceptional locus. If W
is not smooth but all the rest holds we call π a partial resolution.

The idea of a resolution is that we make V smooth by substituting a small part
of it by something somewhat bigger. Everything in the original variety must be
represented by something in the resolution, so π must be a surjection. We don’t
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want to change too much so π must be almost everywhere one-to-one. Finally
we want π to be proper because we want to change compact things by compact
things. If we would allow noncompact fibers we could always make a resolution
smaller by deleting a point in a noncompact fiber.

In dimension one we can construct a resolution resolution using a well known
technique from number theory: the integral closure. If R is a domain and K =
{f/g|f, g ∈ R, g 6= 0} is its field of fractions then the integral closure of R is the
set of elements in K that satisfy a monic polynomial with coefficients in R.

R̃ = {u ∈ K|∃r0, . . . , rk−1 ∈ R : uk + rk−1u
k−1 + · · ·+ r0 = 0}

A ring that is equal to its own integral closure is also called normal and the
integral closure is also called the normalization. Note that the integral closure
has the same Krull dimension as the original ring because they have the same
field of fractions.

For example if R = C[X, Y ]/(X2−Y 3) then Z := X/Y is integral over R because
Z2− Y = 0. In this example one can show that the integral closure of R is C[Z].
There is a standard embedding of R ⊂ R̃ because every element in R satisfies
the monic polynomial X − r. This gives a map

V(R̃)→ V(R).

Theorem 4.2 (Zariski’s main theorem). If R = C[X] is an affine ring over C
and m a maximal ideal then the normalization of the completion is isomorphic to
the completion of the normalization.

˜̂
Rm
∼= ̂̃
Rm

Proof. Zariski-Samuel II, chap. VIII, 13, pp. 313-320.

Theorem 4.3 (Normality and Singularities). If R = C[X] is a normal affine ring
over C then the singular locus of X has dimension at most dimX− 2.

Proof. Mumford, chap. III, sec. 8, p. 273; Shafarevich, p. 111.

Theorem 4.4. If R = C[X] is the coordinate ring of a one-dimensional affine
variety then the map

X̃ = V(R̃)→ V(R) = X.

is a resolution.

Proof. The map is surjective because if p is a maximal prime in R then pR̃ is an
ideal in R̃. This ideal is not R̃ otherwise an element u ∈ p would have an inverse
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v ∈ R̃. This inverse satisfies some minimal polynomial f(X) = Xk + rk−1X
k−1 +

· · ·+ r0 ∈ R[X] but then multiplying f(v) with uk−1 we see that

uk−1f(v) = v + rk−1 + rk−2u+ · · ·+ r0u
k−1 = 0,

and v must sit in R. Therefore pR̃ is contained in at least one maximal ideal of
R̃.

The map is almost everywhere one to one because the two rings have the same
field of fractions. Therefore the generators R̃ are of the form fi/gi with fi, gi ∈ R.
So if we invert the gi in R and R̃ we get isomorphic rings and there is a bijection
between {gx ∈ V(R)|gi(x) 6= 0} and {gx ∈ V(R̃)|gi(x) 6= 0}.

The map is proper because every fiber contains only a finite number of points.
To see this suppose that there are an infinite number of points on this fiber then
there is a one-dimensional subvariety of Y ⊂ X̃ that is mapped to one point in X.
Because X̃ is one-dimensional and irreducible the subvariety must be the whole
of X̃.

Finally, the singular locus of an integral ring with dimension n has dimension
n− 2, so if n = 1 the singular locus must be empty.

For example consider the ring R = C[X, Y ]/(Y 2 −X2(X − 1)). This ring corre-
sponds to a curve with a single node at the origin. If we go to the integral closure
we have to add an element Z := Y/X, which satisfies Z2−(X−1). The resulting
ring is

C[X, Y, Z]/(Y 2 −X2(X − 1), ZX − Y, Z2 − (X − 1)) = C[Z].

The resolution corresponds to the embedding

R→ C[Z] :

{
X 7→ Z2 + 1

Y 7→ Z(Z2 + 1)

The resolution is one-to-one everywhere except for X = Y = 0, where we can
chose Z = ±1. These 2 points that map to the zero correspond to the two
incoming branches in the singular point one with slope Y/X = 1 and one with
slope Y/X = −1. The idea that you need to add directions of incoming tangent
lines leads to the idea of blowing up a singularity.
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4.4 Blow-ups

Definition 4.5. Suppose V is an affine variety and n C C[V] is an ideal corre-
sponding to the closed subset X. The blow-up of X is Ṽ = PR̃ with

R̃ = C[V]⊕ nt⊕ n
2t2 ⊕ · · · ⊂ C[V][t].

The standard projection π : Ṽ → V is at least a partial resolution because it is
a proper surjection and π is almoste everywhere one-to-one because if p ∈ V \ X
and y0t, . . . ymt are the generators of nt, there must be at least one yi that is not
zero on p, so the preimage of p will only contain the point

(x1(p), . . . , xn(p), y0(p) : · · · : ym(p)).

The simplest example of a blow-up is the blow-up of the zero point in affine space
Cn. In that case m = (X1, . . . , Xn)C C[X1, . . . , Xn] and

R̃ = C[X1, . . . , Xn, X1t, . . . , Xnt] ⊂ C[X1, . . . , Xn][t]

If we define Yi := Xit we see that

R̃ = C[X1, . . . , Xn, Y1, . . . , Yn]/(XiYj −XjYi)

so

C̃n := {(x1, . . . , xn, y1 : · · · : yn) ∈ Cn × Pn−1|xiyj = xjyi}.

If (x1, . . . , xn) 6= 0 then the yi are fixed up to a scalar so the map π : C̃ → C
is one to one for these points. For the zero point the yi can be whatever they
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want so the exceptional locus is {0}×Pn−1. The points in this fiber represent all
possible lines through the zero point.

If V is a closed affine subvariety of Cn containing the zero then we can also blow
up this point. If we denote the maximal ideal in R = C[V] = C[X1, . . . , Xn]/f by
n, the blow-up is the proj of the ring R̃ = C[V]⊕ nt⊕ n2t2 ⊕ . . . .

Again the blow-up is everywhere one to one except for the zero fiber. To find
the zero fiber we need to divide out the ideal in R̃ generated by X1, . . . , Xn. The
part in niti that is generated by X1, . . . , Xn is precisely ni+1ti so

R̃/(X1, . . . , Xn) = C⊕ n

n2
t⊕ n2

n3
t2 ⊕ . . .

We can write this ring in terms of generators and relations as follows. If f =
(f1, . . . , fk) is the defining ideal of V then we set the initial ideal in(f) to be the
ideal generated by all lowest degree terms of elements in f .

Lemma 4.6. R̃/(X1, . . . , Xn) ∼= C[X1, . . . , Xn]/in(f)

Proof. Let m = (X1, . . . , Xn)C C[X1, . . . , Xn] then

R̃/(X1, . . . , Xn) ∼= C⊕ m + f

m2 + f
t⊕ m2 + f

m3 + f
t2 ⊕ · · · .

Construct a morphism

φ : C[X1, . . . , Xn]→ R̃/(X1, . . . , Xn) : Xi → Xit

It is easy to check that this morphism is surjective.

If f ∈ f and fin is its lowest degree term (with degree `) then

φ(fin) = f(X1, . . . , Xn)t` mod m
`+1t`,

which is zero in m`+f
m`+1+ft

`. So in(f) ⊂ Kerφ.

On the other hand the morphism φ is graded if we give Xi in C[X1, . . . , Xn] degree
one. This implies that the ideal Kerφ is generated by homogeneous elements. If
g ∈ Kerφ is homogeneous then g(Xi)t

` = 0 mod (m`+1 + f)t` so there is an
h ∈ m`+1 such that g + h ∈ f so g ∈ in(f).

The affine variety corresponding to the ring C[X1, . . . , Xn]/in(f) is sometimes
called the tangent cone, because it is the cone that approximates V(R) around
the zero. So in words the previous lemma says that the exceptional fiber at the
zero, corresponds to the points at infinity of the tangent cone.
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Up to now we have only blown up affine varieties but one can also do this with
other varieties. If V is any variety, covered by affine varieties Vi, and U is a
closed subvariety of V then we have a closed subvariety Ui = U ∩ Vi. This gives
an ideal ui ⊂ C[Vi] such that C[Ui] = C[Vi]/ui. For each Vi we can construct
the blow-up Ṽi = PC[Vi] ⊕ uit ⊕ . . . with projection map π : Ṽi → Vi. On the
overlap Vij := Vi ∩ Vj we also get an ideal uij ⊂ C[Vij] which we can blow-
up. The inclusion Vij ⊂ Vi gives a natural embedding C[Vi] ⊂ C[Vij] such that
C[Vij]ui = uij and hence there is an embedding

C[Vi]⊕ uit⊕ · · · ⊂ C[Vij]⊕ uijt⊕ . . .

which gives a map ιij : Ṽij → Ṽi. Using these maps we can glue the blow-ups
together to the blow-up of V at U:

Ṽ =
⋃
i

Ṽi/ ∼

where xi ∼ xj for xi ∈ Ṽi if ιijxi = ιjixj.

We now arrive at the most amazing theorem in the course.

Theorem 4.7 (Hironaka). Every (affine) variety X can be resolved by a sequence
of blow-ups: there is a sequence of maps

X̃ = Xn → Xn−1 → . . .→ X1 → X

such that X̃ is smooth and each map Xi+1 → Xi is a blow-up at some closed
subvariety of Xi

Proof. The proof of this theorem is very long and technical and not at all obvious.
It earned Hironaka a Fields medal in 1970.

This sequence is not unique, there may be several ways to blow-up the singularity.
Moreover the resolution itself is not unique either one singularity can have many
different resolutions. In the next section we will show how this works in the case
of the Kleinian singularities.

4.5 Blowing up Kleinian singularities

We will now calculate the blow-ups corresponding to the Kleinian singularities of
type An. The other types will be treated in the appendices.
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The ring C[X, Y, Z]/(XY − Z2) has a unique singularity in the point (0, 0, 0)
because

(∂X , ∂Y , ∂Z)r = (Y,X, 2Z) = 0⇔ (X, Y, Z) = (0, 0, 0).

The blow-up is (using the convention x = Xt, y = Y t, z = Zt)

PC[X, Y, Z]/(r)⊕ (X, Y, Z)t⊕ (X, Y, Z)2t2 ⊕ · · ·

= P
C[X, Y, Z, x, y, z]

(XY − Z2, Xy − xY, xZ −Xz, Y z − yZ,Xy − Zz, xy − z2)

= {(X, Y, Z,X : Y : Z) ∈ C3 \ {0} × P2|XY − Z2 = 0}
∪ {(0, 0, 0, x : y : z) ∈ {0} × P2|xy − z2 = 0}

where the last bit is the exceptional fiber, it is a conic and hence as a variety it is
isomorphic to P1. We can cover the blow-up variety by two parts corresponding
to

x 6= 0 we can choose coordinates X, η = y/x, ζ = z/x the relation xy − z2 = 0
becomes (η − ζ2) = 0. which is smooth.

y 6= 0 we can choose coordinates ξ = x/y, Y, ζ = z/y the relation xy − z2 = 0
becomes (ξ − ζ2) = 0. which is smooth.

z 6= 0 is not necessary because it implies that both x, y 6= 0.

P1
f

The ring C[X, Y, Z]/(XY − Zn), n ≥ 3 has a unique singularity in the point
(0, 0, 0) because

(∂X , ∂Y , ∂Z)r = (Y,X, 3Z2) = 0⇔ (X, Y, Z) = (0, 0, 0).

The blow-up is

P
C[X, Y, Z, x, y, z]

(XY − Zn, Xy − xY, . . . , Xy − Zn−1z, xy − Zn−2z2)

={(X, Y, Z,X, Y, Z) ∈ C3 \ {0} × P2|XY − Zn}
∪ {(0, 0, 0, x, y, z) ∈ {0} × P2|xy = 0}

where the last bit is the exceptional fiber, it is a union of 2 projective lines that
intersect in the point (0, 0, 0, 0, 0, 1).

We can cover the blow-up variety by three parts corresponding to
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x 6= 0 we can choose coordinates X, η = y/x, ζ = z/x the relation xy−Zn−2z2 = 0
gives η − ζnXn−2 = 0. which is smooth.

y 6= 0 we can choose coordinates ξ = x/y, Y, ζ = z/y the relation xy−Zn−2z2 = 0
gives ξ − ζ2Y n−2 = 0. which is smooth.

z 6= 0 we can choose coordinates ξ = x/z, η = y/z, Z the relation xy − Zn−2z2

gives ξη − Zn−2 = 0, which has a singularity if n > 3, but this singularity
is ’smaller’ so we can blow it up again.

Diagramatically we get the following

�

An

�

An−2

• •�

An−4

• •· · ·

n× P1

In this picture each circle represents a P1, which is topologically a sphere. The
intersection points intersection points between the spheres are normal. This
means that the tangent spaces of the two spheres only intersect in the zero.

It is custom to represent the exceptional fiber by a graph: each projective line
becomes a node and we draw an edge between two nodes if and only if the two
projective lines intersect. These graphs can be used to describe all exceptional
fibers for the Kleinian singularities.

Theorem 4.8. If we resolve the Kleinian singularities by consecutive blow-ups we
get a resolution X̃→ X. The exceptional fiber of the zero is a union of projective
lines that intersect normally. If we represent each projective line by a node and
draw an edge between two lines that intersect we get the following diagrams:

An

Dn

E6

E7

45



CHAPTER 4. RESOLUTIONS OF SINGULARITIES

E8

These diagrams are called the simply laced Dynkin diagrams. The number of
nodes is called the rank of the Dynkin diagram and is equal to the subscripted
number in the type.
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5
Quivers and quotients

In this chapter we will develop the technology of quivers, which will be very useful
in the construction of resolutions of singularities.

5.1 Representations of quivers

Suppose we have an n-dimensional representation of the path algebra. This is a
map ρ : CQ→ EndC(W ) where W is an n-dimensional vector space.

We can decompose the vector space W = Cn into a direct sum.

W ∼= ρ(v1)W ⊕ · · · ⊕ ρ(vk)W.

Note that ρ(vi) acts like the identity on ρ(vi)W because vi is an idempotent.
Choosing bases in ρ(vi)W we can associate with every arrow a of Q a matrix Wa

corresponding to the map

ρ(a)|ρ(t(a))W : ρ(t(a))W → ρ(h(a))W.

This motivates the following definitions: A dimension vector of a quiver is a map
α : Q0 → N, the size of a dimension vector is defined as |α| :=

∑
v∈Q0

αv. A
couple (Q,α) consisting of a quiver and a dimension vector is called a quiver
setting and for every vertex v ∈ Q0, αv is referred to as the dimension of v.
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An α-dimensional complex representation W of Q assigns to each vertex v a linear
space Cαv and to each arrow a a matrix

Wa ∈ Matαh(a)×αt(a)(C)

The space of all α-dimensional representations is denoted by Rep(Q,α).

Rep(Q,α) :=
⊕
a∈Q1

Matαh(a)×αt(a)(C)

If W is a representation of Q and p = a1 . . . ak is a path we can define Wp =
Wa1 . . .Wak and if q = λ1p1 + · · ·+λnpn is a linear combination of paths with the
same head and tail we set Wq = λ1Wp1 + · · ·+ λnWpn .

To the dimension vector α we can also assign a group

GLα :=
⊕
v∈Q0

GLαv(C).

An element of this group, g, has a natural action on Rep(Q,α):

W := (Wa)a∈Q1 , W
g := (gh(a)Wag

−1
t(a))a∈Q1

and representations in the same orbit represent isomorphic CQ-representations. If
W ∈ Rep(Q,α) we denote the corresponding CQ-representation by ρW , but some-
times we will also write sloppily ρ ∈ Rep(Q,α) to denote a CQ-representation.

If A is an algebra of the form CQ/〈ri|ri ∈ R〉 we can split each relation in
its components by multiplying both sides with vertex idempotents. Hence we
can assume that every path in the relation ri has the same head and tail. A
representation of Q will correspond to a representation of A if Wri = 0 for all
relations ri. Therefore we can define a closed subvariety Rep(A,α) ⊂ Rep(Q,α)
that contains all representations of Q that can be seen as representations of
A. Rep(A,α) will be closed under the action of GLα and the orbits will be
isomorphism classes of A-representations.

5.2 Mumford quotients

Just like in the case of finite groups we want to construct a quotient for this
action, but now new problems arise because the group GLα is not finite. We
illustrate this with an example.

Example 5.1. Consider the quiver setting 1 1ks . In this case Rep(Q,α) = C2

and GLα = C∗2 which acts by (λ, µ)(x, y) 7→ (λµ−1x, λµ−1y). The orbits of this
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action come in two types. First there is the origin, which forms an orbit by itself
and then there is an orbit for each (x : y) ∈ P2. If we take the ring of invariants
we only get

C[X, Y ]GLα = C,

so the categorical quotient is just one point. To get the P1 orbits we need to
construct Proj C[X, Y ].

In this section we will construct a new type of quotient which can see more orbits
than the categorical quotient.

A character of a group G is a group morphism θ : G → C∗. If θ is a character,
we write nθ for the character θ : G → C∗ : g 7→ θ(g)n and the zero character
corresponds to the trivial morphism 0 : G 7→ {1} ⊂ C∗. If X is a variety with a
G-action then we say that f ∈ C[X] is a θ-semi-invariant if f(g · x) = θ(g)f(x).
The space of θ-semi-invariants is denoted by C[X]θ. This space does not form a
ring because the product of two θ-semi-invariants is a 2θ-semi-invariant, but we
can make a graded ring by putting all nθ-semi-invariants together.

SI(X, θ) =
⊕
n≥0

C[X]nθ.

Because this ring is graded we can look at its proj and this variety is called the
Mumford quotient:

X//θG := Proj SI(X, θ).

Now let f1, . . . , ft, s1, . . . su be generators for the ring SI(X, θ) where the fi have
degree 0 (i.e. they are invariants) and the si have degree > 0. For each si we can
construct the ring

SI(X, θ)[s−1
i ]0 = (C[X][s−1

i ])G,

which is the categorical quotient
(
X \ s−1

i (0)
)
//G. This means that the Mumford

quotient can be covered by categorical quotients of affine open subsets of X.

A point p ∈ X is called GIT-θ-semistable (or just semistable1) if there is an
nθ-semi-invariant function that is nonzero for p. Every semistable point will be
nonzero for at least one of the si so the Mumford quotient can be seen as a kind
of categorical quotient for the semistable points.

For the group GLα the characters are given by vectors θ ∈ ZQ0 :

θ : GLα → C∗ : (gv)v∈Q0 7→
∏
v∈Q0

(det gv)
θv .

1GIT stands for geometric invariant theory
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Definition 5.2. We define the moduli space of θ-semistable representations of
Q as

Mθ(Q,α) = Rep(Q,α)//θGLα,

and similarly for an algebra A = CQ/〈ri〉 we set

Mθ(A,α) = Rep(A,α)//θGLα.

Lemma 5.3. If α · θ :=
∑

v∈Q0
αvθv 6= 0 then

Mθ(Q,α) = ∅

Proof. One can check that there are no θ-semi-invariants because a scalar matrix
λ ∈ GLα will act trivially on Rep(Q,α) but as λα·θ on a θ-semi-invariant.

Example 5.4. If we return to the example 5.1 we see that for 1 1ks the
character must be of the form (θ1,−θ1). A semi-invariant is a function f ∈
C[X, Y ] such that

f(λµ−1x, λµ−1y) = λθ1µ−θ1f(x, y),

so it is a function of degree θ1. Depending on the θ1 there are 3 cases.

• If θ1 < 0 the ring of semi-invariants is just C and quotient is empty.

• If θ1 = 0 the ring of semi-invariants is C ⊕ C ⊕ . . . ∼= C[t] and quotient is
just a point.

• If θ1 > 0 the ring of semi-invariants is C[Xθ1 , Xθ1−1Y, . . . , Y θ1 ]. The quo-
tient is a P1 (use the map (x : y) 7→ (xθ1 : · · · : yθ1)).

5.3 Finding semi-invariants

In general we can ask the question, how to find invariants and semi-invariants for
quiver representations.

Given a quiver Q a cycle is a path p with h(p) = t(p). If W is a representation of
Q and p is a cyclic path then Wp is a square matrix that changes by conjugation
g ·Wp = gh(p)Wpg

−1
h(p). This means that the trace TrWp is invariant under the

GLα-action and the map

tp : Rep(Q,α)→ C : W 7→ TrWp

is an element of C[Rep(Q,α)]GLα .
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Theorem 5.5 (Le Bruyn-Procesi). The ring C[Rep(Q,α)]GLα is generated by all
function of the form tp for p a cyclic path in Q.

Note that there are an infinite number of such functions but you only need a
finite number of them because C[Rep(Q,α)]GLα is a finitely generated ring.

Example 5.6. If we take a quiver with one vertex and one loop and α = 2, the
space of representations is just the space of 2× 2-matrices with the conjugation
action of GLn(C). If we call this matrix X, the invariants are

TrX,TrX2

Other invariants can be expressed in terms of these: detX = 1
2
((TrX)2−TrX2).

Using the Caley-Hamilton identity X2 − Tr (X)X + detX = 0 one can express
TrX3 = Tr (X)Tr (X2)− detXTrX.

Example 5.7. If Q is a quiver and α = (1, . . . , 1) then we do not need to take
traces, the invariant is just the product of the values of all its arrows. If a cycle
runs through a given vertex twice its invariant is the product of the two smaller
cycles. E.g. for

1

a1,...,ak
&.
1

b1,...,bk

fn

There are kl invariants tij = aibj which generate all other invariants.

A way to construct a θ-semi-invariant is the following: let i1, . . . , is be the vertices
for which θi` is negative, while j1, . . . , jt be the ones with a positive θj` . Now
choose for each i and j |θiθj| elements in jCQi and put all these in a

∑
j |θj| ×∑

i |θi|-matrix D over CQ.

D :=



j1←i1 ... j1←i1 j1←is ... j1←is
... |θj1θi1 |×

... ···
... |θj1θis |×

...
j1←i1 ... j1←i1 j1←is ... j1←is

...
...

...
jt←i1 ... jt←i1 jt←is ... jt←is

... |θjtθi1 |×
... ···

... |θjtθis |×
...

jt←i1 ... jt←i1 jt←is ... jt←is



If W ∈ Rep(Q,α) then we can substitute each entry in D to its corresponding
matrix-value in W . In this way we obtain a block matrix DW with dimensions
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∑
i αi|θi| ×

∑
j αj|θj|. One can easily check that

Dg·W =



gj1
...

gj1
...

gjt
...

gjt

DW



g−1
i1

...
g−1
i1

...
g−1
is

...
g−1
is


So if DW is a square matrix the determinant of DW is a θ-semi-invariant:

detDg·W = det g
|θj1 |
j1
· · · det g

|θjt |
jt

detDW det g
−|θi1 |
i1

· · · det g
−|θis |
is

= gθ detDW .

We will call these semi-invariants determinantal semi-invariants.

Theorem 5.8 (Schofield-Van den Bergh). As a C[RepαQ]GLα-module C[RepαQ]θ
is generated by determinantal semi-invariants. As a ring SIθ[RepαQ] is generated
by invariants (i.e. traces of cycles) and determinantal nθ-semi-invariants with
n ∈ N.

Note that this implies that there are only θ-semi-invariants if DW is a square
matrix so

∑
i αi|θi| =

∑
j αj|θj| or equivalently θ · α = 0.

Example 5.9. For the quiver setting below with θ = (−2, 1)

2
a1,...,ak +3 1

a determinantal θ-semi-invariant is given by

det

(∑
i λiρ(ai)∑
j µjρ(aj)

)
=
∑
ij

λiµj det
(
ρ(ai)
ρ(aj)

)
=
∑
ij

λiµj(ρ(ai)1ρ(aj)2 − ρ(ai)2ρ(aj)1).

where we have used the row linearity of the determinant and the fact that ρ(ai)
is a row vector. For the same reasons a 2θ-semi-invariant is given by linear
combinations of

det

(
ρ(ai) ρ(aj)
ρ(ak) ρ(al)

)
.

5.4 Stability in Representation theory

In this section we will describe a criterion that one can use to check whether a
representation is semi-stable or not.
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Recall that a subrepresentation of a representation ρ : A→ End(V ) is a subspace
W ⊂ V such that is invariant under A: ρ(A)W = W . The dimension vector of a
subrepresentation W is the map αW : Q0 → N : v 7→ dim ρvW .

Let θ : Q0 → Z be the vector corresponding to a character of GLα. A representa-
tion ρ : A→ GL(V ) is called

• RT-θ-semistable if αV ·θ = 0 and αW ·θ ≥ 0 for all proper subrepresentations
W ,

• RT-θ-stable if αV · θ = 0 and αW · θ > 0 for all proper subrepresentations
W ,

• RT-θ-polystable if it is the direct sum of RT-θ-stable representations.

Theorem 5.10. If ρ ∈ Rep(Q,α) is

• RT-θ-semistable iff GIT-θ-semistable.

• RT-θ-stable iff it is GIT-θ-semistable and the stabilizer of ρ are the scalar
matrices C∗ ⊂ GLα.

• RT-θ-polystable iff it is GIT-θ-semistable and the orbit of ρ is closed in
Repθ−ss(Q,α).

Proof. The proof can be found in [?][Chapter 4].

As GIT-semistability and RT-semistability coincide, we will use the terms θ-
semistable, θ-stable and θ-polystable.

Note that if θ = 0 then every representation is θ-semistable, θ-stable is the same
as simple and θ-polystable is the same as semisimple.

5.5 Stability and moment maps

We have seen that we can construct Mθ(Q,α) as the proj of a graded ring. In
this viewMθ(Q,α) classifies all closed orbits in the space of semistable represen-
tations. Not all semistable representations have closed orbits, only the polystable
representations. Therefore Mθ(Q,α) is not a set-theoretical quotient but a cat-
egorical quotient.
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One of the problems in the construction is to check whether a representation is
polystable or not. To do this we must check whether there is a nonzero semi-
invariant. After that we still have to check whether the orbit is closed or not.

Another approach is to find equations for a subspace of Rep(Q,α) that contains
only polystable representations and that meets every polystable orbit in at least
one point.

Theorem 5.11 (King). Let Q be a quiver, α a dimension vector and θ a char-
acter. A representation ρ is θ-polystable if and only if there is a ρ′ ∈ GLα · ρ such
that

∀v ∈ Q0 :
∑
h(a)=v

ρ′(a)ρ′(a)† −
∑
t(a)=v

ρ′(a)†ρ′(a) = iθv1αv .

Here † stands for the hermitian transpose.

Proof. The proof can be found in [?].

If we define the moment map

µR : Rep(Q,α)→ glα =
∏
v∈Q0

matα(v)×α(v)(C) : ρ 7→
∑
h(a)=v

ρ(a)ρ(a)†−
∑
t(a)=v

ρ(a)†ρ(a)

and ~θ = (iθv1αv)v∈Q0 ∈ glα then it is clear that µ−1
R (~θ) is a space that meets every

closed semistable orbit.

If ρ ∈ µ−1
R (~θ) then gρ does not necessarily sit in µ−1

R (~θ) but if we restrict to the
case

gg† := (gvg
†
v)v∈Q0 = (1v)v∈Q0

then this is the case. So there is an action of the group Uα := {g ∈ GLα|gg† = 1}
on the space µ−1

R (~θ).

Theorem 5.12 (King). The embedding µ−1
R (~θ) ⊂ Rep(Q,α) induces a homeo-

morphism between

µ−1
R (~θ)/Uα and Mθ(Q,α)

Proof. This follows immediately from theorem 5.11

Note that this map is just a homeomorphism between topological spaces, not
an isomorphism of varieties because the source does not have the structure of a
complex variety as the map µR is not holomorphic.
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We illustrate the theorem with a small example. If we want to construct P1 we
can do this via the moduli space M(1,−1)( 1 1ks ). In this case

µ−1
R (1,−1) = {(a, b) ∈ C2|aa† + bb† = 1,−a†a− b†b = −1}

This is just the real unit 3-sphere embedded in R4 = C2. The group Uα = U1×U1

acts on the 3-sphere by (λ, µ)(a, b) = (λµ−1a, λµ−1b). All orbits are circles and
the quotient µ−1

R (1,−1)→ µ−1
R (1,−1)/Uα is a circle bundle over the sphere. This

bundle is known as the Hopf-fibration. Below is a picture of the Hopf-fibration
where the 3-sphere is projected stereographically to R3 plus a point at infinity.
The circles are all closed curves except the vertical line, which corresponds to the
orbit of the point at infinity.

55



CHAPTER 5. QUIVERS AND QUOTIENTS

56



6
Braiding it all together

In this chapter we will use preprojective algebras to study the deformations and
resolutions of Kleinian singularities.

6.1 Resolutions of Kleinian singularities

As we already know the preprojective algebra of an extended Dynkin quiver is
Morita equivalent to the skew group ring associated to a Kleinian singularity.

Π(Q) = eC[V ] ? Ge

We also constructed a dimension vector which assigned to each vertex the dimen-
sion of the corresponding simple representation. In this section we denote this
dimension vector by ς.

Theorem 6.1. C[Rep(Π(Q), ς)]GLς ∼= C[V ]G

Proof. We do the proof in the An-case and refer to the appendices for the other
cases.

For An the coordinate ring of the representation space has the following presen-
tation

C[Rep(Π(Q), ς)] = C[Xi, Yi|0 ≤ i ≤ n]/(XiYi −Xi+1Yi+1|0 ≤ i ≤ n).
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A monomial m in the Xi, Yi will correspond to an invariant if it is a product of
cycles in the quiver because each path p transforms as gh(p)g

−1
t(p). The homology

of the quiver (viewed as a CW-complex) is generated by the XiYi (which all
correspond to the same element in ζ ∈ C[Rep(Π(Q), ς)]), ξ = X0 . . . Xn and
η = Y0 . . . Yn. The relation between these 3 invariants is ξη − ζn+1.

Corollary 6.2.
M0(Π, ς) ∼= V//G

From the construction of the moduli space we know that for any θ the map

π :Mθ(Π, ς)→M0(Π, ς)

is surjective, proper and one to one on an open subset, so because M0(Π, ς) is
an irreducible variety this map is almost everywhere one-to-one and π is at least
a partial resolution.

Definition 6.3. A stability condition θ : Q0 → Z with θ · ς = 0 is called generic
if there is no dimension vector β 6= ς with βv ≤ ςv such that β · θ = 0. For a
generic stability condition the notions of stability, semistability and polystability
coincide.

Theorem 6.4. If θ is generic then

π :Mθ(Π, ς)→M0(Π, ς)

is a resolution.

Proof. We do the proof in the An-case and refer to the appendices for the other
cases.

First we look at the smooth locus of Rep(Π, ς). The dimension of this space is
n + 2 because if all Xi, Yi are invertible we have Yi = X0Y0/Xi, so we there are
2n+ 2− n = n+ 2 variables we can chose freely.

The generating relations are XiYi −Xi+1Yi+1 (i ≤ n− 1) (we don’t need the last
one because it is minus the sum of the others). The Jacobian matrix becomes
this n× 2n+ 2 matrix

Y0 X0 −Y1 −X1 0 . . . 0
0 0 Y1 X1 −Y2 −X2 0 . . . 0
...

...
0 . . . −Yn Xn
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The point (xi, yi)0≤i≤n is smooth if this matrix has rank n. This is precisely when
at least n of the n+ 1 pairs (xi, yi) are nonzero.

If there is more than one such pair zero then the representation splits as a direct
sum W1 ⊕ W2 because the set of vertices splits in 2 subsets with no nonzero
arrows between these 2 sets. If θ is generic then θ · αW1 6= 0 and because θ ·
(αW1 + αW2) 6= 0 the dot product of θ with either αW1 or αW2 must be negative,
so the representation W1 ⊕W2 is not stable.

Therefore all θ-stable points are smooth points of Rep(Π, ς). Also all stabilizers
of stable points are C∗ so all orbits are diffeomorphic to GLς/C∗ = PGLς . So
Repθ−ss(Π, ς) is a PGLς-fiber bundle with baseMθ(Π, ς). If the base is not smooth,
the total space can also not be smooth so Mθ(Π, ς) must be smooth and π :
Mθ(Π, ς)→M0(Π, ς) is a resolution.

A case independent proof of this theorem can be found in [?].

If we look at the special generic character θ that assigns to the vertex of the
trivial representation −|ς| + 1 and 1 to all other vertices then there is also an
easy description of the exceptional fiber.

Theorem 6.5. For θ = (−|ς|+1, 1 . . . , 1) the exceptional fiber consists of a union
of P1’s, whose intersection diagram is the corresponding Dynkin diagram.

Proof. Again we do the An case. Note that in this case to be stable there must
be a nonzero path from the trivial vertex v0 to any other vertex vi. There are
only two such basic paths Xi−1 . . . X0 and Yi . . . Yn. Furthermore if we perform
a base change on ρ, the ratio between these 2 paths does not change. Therefore
the map

Mθ(Π, ς)→ P1 × · · · × P1 : ρ 7→ ((ρ(Xi−1 . . . X0) : ρ(Yi . . . Yn)))1≤i≤n

is well-defined. Fix a stable representation ρ and suppose that (ρ(Xi−1 . . . X0) :
ρ(Yi . . . Yn)) 6= (1 : 0) then Yi 6= 0 and hence if ρ sits in the exceptional fiber
Xi = 0 and (ρ(Xj−1 . . . X0) : ρ(Yj . . . Yn)) = (0 : 1) for all j > i. Similarly if
(ρ(Xi−1 . . . X0) : ρ(Yi . . . Yn)) 6= (0 : 1) then (ρ(Xj−1 . . . X0) : ρ(Yj . . . Yn)) = (1 :
0) for all j < i.

From this we can deduce that the image of the exceptional fiber under this map
is ⋃

i=1→n

(1 : 0)i−1 × P1 × (0 : 1)n−i+1,

which is precisely a chain of intersecting P1’s. The map restricted to the excep-
tional fiber is also an injection because we can make a base change such that all
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nonzero Xi, Yj are 0, 1 except for X0, Yn which are determined up to a common
multiple.

Example 6.6. Consider the McKay quiver setting for the D4 singularity

1

a

��

1

bvv
2

b∗
66

a∗

VV

c∗

��d∗vv
1

d
66

1

c

VV

and take θ = (−5, 1, 1, 1, 1), where the first vertex (trivial vertex) is the top left
one. The preprojective algebra is

CQ/(aa∗ + bb∗ + cc∗ + dd∗, a∗a, b∗b, c∗c, d∗d).

Suppose that ρ ∈ Rep(Π, ς) is a stable representation that sits above the zero
point. The latter means that all traces of cycles are zero, while the former
implies that there must be a nonzero path from the trivial vertex to all the other
vertices. Therefore ρ(a), ρ(b∗), ρ(c∗), ρ(d∗) cannot be zero. For the central vertex
we must have that ρ(a), ρ(b), ρ(c), ρ(d) span a 2-dim space.

The kernel of ρ(a∗) contains ρ(a) so if ρ(a∗) were nonzero then either ρ(a∗b),
ρ(a∗c), ρ(a∗d) 6= 0 but because stability implies there is a nonzero path in the
opposite direction one of the cycles would also be nonzero. Therefore ρ(a∗) = 0
and

ρ((aa∗ + bb∗ + cc∗ + dd∗) = ρ(bb∗) + ρ(cc∗) + ρ(dd∗) = 0

This means that at least 2 of the ρ(b), ρ(c), ρ(d) are nonzero and not a multiple
of ρ(a). Now we distinguish the following cases

• If ρ(b) = 0 we can pick a basis in the middle vertex such that ρ(a) = ( 1
0 ),

ρ(c) = ( 0
1 ). The relations ρ(c∗c) = 0, ρ(d∗d) = 0 and ρ(cc∗ + dd∗) = 0

imply that after base change in the heads of c, d we can assume ρ(d) = ( 1
0 )

and ρ(c∗) = −ρ(d∗) = ( 1 0 ) The only thing we did not fix is ρ(b∗) which is
nonzero and defined up to a multiple by base change in h(b∗). This gives a
P1 of possibilities.

• If ρ(c) = 0 this also gives a P1 of possibilities.

• If ρ(d) = 0 this also gives a P1 of possibilities.

• If ρ(b), ρ(c), ρ(d) 6= 0 then these three vectors generate a one-dimensional
subspace otherwise we can make a nonzero cycle. Therefore ρ(bb∗), ρ(cc∗),
ρ(dd∗) also span a one-dimensional space and The ratio ρ(bb∗)/ρ(cc∗) is
invariant under base change. It can be seen as an element in P1\{0,∞,−1}
because ρ(bb∗) + ρ(cc∗) + ρ(dd∗) = 0.

60



CHAPTER 6. BRAIDING IT ALL TOGETHER

6.2 From resolving to deforming

In this section we show that the moduli space of θ-semistable representations
of a preprojective algebra is homeomorphic to the moduli space of semisimple
(=0-semistable) representation of a deformed preprojective algebra.

Theorem 6.7. Let Π be a preprojective algebra and λ : Q0 → Z then there is a
homeomorphism between

Mλ(Π
0) and M0(Πλ)

Proof. For the proof we will use King’s criterion for stability in the case of pre-
projective algebras. Note that the condition for stability∑

h(a)=v

ρ(a)ρ(a)† −
∑
t(a)=v

ρ(a)†ρ(a) = θv

looks very much like the deformed preprojective relation.

On Rep(Q̄, α) we can define a C-linear map ∨:

ρ∨(a) = ρ(a∗) and ρ∨(a∗) = −ρ(a)

If we replace the role of † by ∨ in µR we get a new map

µC : Rep(Q̄, α)→ glα :
∑
h(a)=v

ρ(a)ρ(a)∨ −
∑
t(a)=v

ρ(a)∨ρ(a)

and the deformed preprojective relation can be seen as

µC(ρ) = 2λ.

The factor two comes from the fact that the sum runs over all arrows not just
the unstarred ones.

Consider the following bijection h : Rep(Q̄, α)→ Rep(Q̄, α)

hρ(a) =
1√
2

(
iρ(a)− iρ(a∗)†

)
and hρ(a∗) =

1√
2

(
iρ(a∗) + iρ(a)†

)
This bijection is Uα-equivariant and

µC(hρ) =
1

2
(µC(ρ)† − µC(ρ))− 2iµR(ρ) and µR(hρ) =

i

2
(µC(ρ)† + µC(ρ)).

Now

M0(Πλ, α) = (µ−1
C (2λ) ∩ µ−1

R (0))/Uα and Mλ(Π, α) = (µ−1
C (0) ∩ µ−1

R (λ))/Uα
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From this it is easy to see that

M0(Π2λ, α) =Mλ(Π, α)

By scaling the matrices with
√
r we see that M0(Πλ, α) ∼= M0(Πrλ, α), so this

proves theorem 6.7.

Remark 6.8. Note that the homeomorphism in theorem 6.7 cannot be a mor-
phism of varieties because the former is a quasiprojective variety, while the latter
is an affine variety.

If Π is a preprojective algebra that comes from a Kleinian singularity thenM0(Π)
is a hypersurface defined by a function f(X, Y, Z) which describes the relation
between the 3 invariants that generate the ring of invariants. We can find 3 cycles
in the quiver whose traces ξ, η, ζ satisfy f(ξ, η, ζ). These generators also can be
interpreted as invariants of Rep(Πλ, α), so for each λ the generators ξ, η, ζ will
satisfy a different relation fλ(X, Y, Z) and this will give a deformation of f . It
might however be the case that different deformation parameters give the same
deformation of f .

Example 6.9. For A2 the coordinate ring of the representation space has the
following presentation

C[Rep(Πλ, ς)] = C[Xi, Yi|0 ≤ i ≤ 2]/(XiYi −Xi+1Yi+1 − λi|0 ≤ i ≤ 2).

which is trivial unless λ0 + λ1 + λ2 = 0.

Just as in the undeformed case the generators are the XiYi, ξ = X0 . . . X2 and
η = Y0 . . . Y2. If we put ζ = X0Y0 then X1Y1 = ζ − λ0 and X2Y2 = ζ − λ0 − λ1.
The relation between these 3 invariants is

ξη − ζ(ζ − λ0)(ζ − λ0 − λ1) = 0.

If we substitute ζ → ζ − 0+λ0+λ0+λ1
3

and assume that λ0 +λ1 +λ2 = 0 we get the
following

ξη − (ζ +
λ0 − λ2

3
)(ζ +

λ1 − λ0

3
)(ζ +

λ2 − λ1

3
).

This function is invariant under the action of S3 = Σ({0, 1, 2}) on {~λ ∈ C3|λ0 +
λ1 + λ2 = 0}

λi 7→ (−1)σλσ(i).

If we chose a basis e1 = (−1, 1, 0), e2 = (−1, 0, 1) for we get the following matrix
expressions for the transpositions

(01) 7→
(

1 1
0 −1

)
, (02) 7→

(
−1 0
1 1

)
, (12) 7→

(
0 −1
−1 0

)
.

So there is a group that acts on the parameter space, while keeping the deforma-
tion the same.
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6.3 Weyl groups and versal deformations

Definition 6.10. If Γ is a graph we can define a bilinear form on ZΓ0

〈x, y〉Γ = 2
∑
i∈Γ0

xiyi −
∑

i—j∈Γ1

xiyj − xjyi.

And for each node of the graph we define a linear map

si : ZΓ0 → ZΓ0 : x 7→ x− 〈x, ei〉ei

where ei ∈ ZΓ0 is the standard basis vector with a 1 on the ith place. The group
generated by these reflections is called the Weyl group WΓ.

With this in mind we see that S3 is the Weyl group of the Dynkin diagram A2.

Theorem 6.11. The following are equivalent:

1. the bilinear form 〈, 〉Γ is positive definite,

2. the Weyl group WΓ is finite,

3. Γ is a Dynkin diagram.

Proof. This is a classic and can be found in every book on Lie groups.

We will now apply this to our situation.

Lemma 6.12. If α is a dimension vector and λ · α 6= 0 then there are no α-
dimensional representations of Πλ(Q).

Proof. Let ρ be a representation If we take the trace of ρ(
∑

a∈Q1
aa∗ − a∗a −∑

v∈Q0
λvv) we see that the trace of the first sum is zero because it is a commu-

tator. If the dimension vector is α the trace of the second sum is λ · α, so this
must be zero as wel.

Therefore it makes sense to define

Λα := {~λ ∈ CQ0 |λ · α = 0}

If Π is the preprojective algebra of a Kleinian singularity and ς the standard
dimension vector then we can construct a basis for Λς :

ei = (−ςi, 0, . . . , 0, 1, 0, . . . , 0) with the one on the ith spot
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The n basis vectors correspond to the nontrivial vertices of the McKay quiver,
which also correspond to the nodes of the Dynkin diagram Γ associated with the
Kleinian singularity. With this identification we get an action of the Weyl group
WΓ on Λς

∼= ZΓ ⊗ C.

Theorem 6.13. If g ∈ WΓ then fλ and fgλ define isomorphic hypersurfaces.

Proof. The proof of An is analogous to that of A2. First we make a substitution
ζ → ζ − 1

n+1

∑n
i=1 λ0 + · · ·+ λi−1 such that the degree n-term becomes zero. If

we choose a new parametrization µ0, . . . , µn where

µj = λ0 + · · ·+ λj−1
1

n+ 1

n∑
i=1

λ0 + · · ·+ λi−1

then
∑
µj = 0, µj+1 − µj = λj and the equation becomes

ξη − (ζ − µ0) . . . (ζ − µn).

We have an action of Σ({0, . . . , n}) by permuting the µi, which leaves the poly-
nomial invariant. The transposition (i, i+ 1) will act as

(−
n∑
i=1

λi, λ1, . . . , λn) 7→ (−
n∑
i=1

λi, λ1, . . . , λi−1 + λi,−λi, λi+1 + λi, . . . )

which is precisely

si : ZΓ0 → ZΓ0 : x 7→ x− 〈x, ei〉ei

where 〈, 〉 comes from the An Dynkin diagram.

Theorem 6.14. The quotient Λς//W is isomorphic to Cn and there is a polyno-
mial versal deformation

F : C3 × Λς//W→ C

with F (x,W · λ) ∼= fλ.

Proof. If we look at the permutation action of W = Σn+1 on Cn+1, the ring of
invariant functions is the ring of symmetric functions. It is well known that this
ring is generated by the coefficients of the polynomial

p(t) = (t− u0) . . . (t− un),

so

C[u0, . . . , un]Σn+1 = C[u0 + · · ·+ un, . . . , u0 . . . un].
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which is a polynomial ring in n+1 variables. We have seen that, by base change to
the µi, Λς could be identified with the subspace of Cn+1 for which u0+· · ·+un = 0.
So the ring of invariants C[Λς ]

W is

C[u0 + · · ·+ un, . . . , u0 . . . un]/(u0 + · · ·+ un)

which is a polynomial ring in n variables, so Λς//W ∼= Cn.

For An we already know that

Jac(XY − Zn+1) = C[X, Y, Z]/(X, Y, (n+ 1)Zn) = C[Z]/(Zn).

and we can chose a basis Zi, i = 0, . . . , n − 1 to obtain a versal deformation of
XY − Zn+1. This versal deformation consists of all XY − p(Z) where p(Z) is a
monic polynomial of degree n + 1 for which the coefficient of Zn is zero. These
are precisely those polynomials of the form

p(Z) = (Z − µ0) . . . (Z − µn).

Therefore the deformation

F (x,W · λ) = XY − (Z − µ0) . . . (Z − µn).

is the versal deformation we are looking for.

6.4 Braid groups and Monodromy

We have seen that we can construct a polynomial versal deformation

F : C3 × Cn → C

where Cn = Λς//W.

Theorem 6.15. Let ς be the standard dimension vector. For each v ∈ Q0 we
define a hyperplane in Λς

Hv := {λ ∈ Λς |λv = 0}

Denote the complement of the orbits of all hyperplanes by

Λ◦ς := Λς \W ·
⋃
v∈Q0

Hv.

If p ∈ Λ◦ς//W then F−1
p (0) is smooth.
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Proof. The space
XY − (Z − µ0) . . . (Z − µn) = 0

is singular if µi = µj for some i 6= j. The Weyl group permutes the indices so
up to the action of W we can assume j = i + 1. In the original coordinates this
means

λi = 0

so λ ∈ Hi.

Because the parameter space Λ is complex, the complement of a hyperplane is
still connected. This means that Λ◦ς and hence also L := Λ◦ς/W is connected.

The space L comes with a bundle of smooth deformations of the singularity

B := {(X, Y, Z, λ) ∈ C3 × L|F (X, Y, Z, λ) = 0} → L

We denote the fibers of B by Bλ.

Given a path γ : [0, 1] → L we can try to relate the fibers above γ(0) and γ(1).
In order to do this we need to define a vector field V on B such that under the
projection π : B → L we have dπ(Vx) = dp

dt
|t=r if γ(r) = π(x). This is always

possible because the map (dπ)x is surjective for every x ∈ B.

If we have found such a V , we can integrate it to obtain a time-one-flow φ : B→ B.
Because dπ(Vx) = dp

dt
|t=r a point x ∈ π−1(γ(0)) will flow to a point y ∈ π−1(γ(1)).

And hence φ|π−1(γ(0)) will be a homeomorphism between π−1(γ(0)) and π−1(γ(1)).
From this we can deduce that all fibers in B are homeomorphic.

The fibers are however not homeomorphic in a canonical way. Different choices
of V0, V1 will result in different connecting morphisms but two such morphism
will be homotopic because the flows coming from Vt := (1 − t)V0 + tV1 give a
homotopy between the two connecting morphisms. Similarly, if γ0 and γ1 are two
homotopic paths with homotopy γt, we can find vector fields Vt such that the
resulting flows give a homotopy between the connecting homeomorphisms.

Because everything is defined up to homotopy we can look at the action of these
homeomorphisms on the homology of the fiber.

Theorem 6.16. The homology of the fiber is

H•(Bλ,C) = C⊕ 0⊕ Cn ⊕ 0⊕ 0

Proof. Because all fibers are diffeomorphic we can look at the fiber for λ = ϑ =
(−n, 1, . . . , 1). In this case the fiber is diffeomorphic to the minimal resolution of
the singularity.
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The singularity itself is contractible because it is of the form C2//G where G acts
linearly, so scaling by r ∈ R will contract it to a point. Therefore Hi(C2/G) =
(C, 0, 0, 0, 0). Now if we blow up a point, we delete this point and add in a P1.
A P1 has homology (C, 0,C, 0) so using standard homological techniques we can
deduce that after n blow ups we get.

H•(X̃) = (C, 0,Cn, 0, 0)

So the most interesting part of the homology is the second. We can bun-
dle all the second homology spaces together in one bundle π : H → L with
π−1(λ) = H2(Bλ,R). Each path in L defines a connecting isomorphism between
the two fibers, which only depends on the homotopy class of the path. If U is a
contractible open set in L, we can use these for a local trivialization. So H is a
vector bundle.

Definition 6.17. The fundamental group of L is called the braid group of type
ADEn depending on the Dynkin diagram. We denote it by Br = π1(L, λ)

Theorem 6.18. The braid group has the following presentation: it is generated
by elements σi one for every vertex i in the Dynkin diagram. Its relations are

σiσj = σjσi

if there is no edge between i and j, and

σjσiσj = σiσjσi,

if there is an edge between i and j.

Proof. In theAn case the space L consists of all unordered n+1-tuples {µ0, . . . , µn}
whose sum is zero. This is a deformation retract of the space of all unordered
n+ 1=tuples. To see this one can use the deformation

{µ0, . . . , µn} → {µ0 − t
µ̄

n+ 1
, . . . µn − t

µ̄

n+ 1
)

with t ∈ [0, 1]. So
Br = π1({S ⊂ C|#S = n+ 1}, p)

If we take as p = {0, 1, . . . , n} a loop γ in {S ⊂ C|#S = n + 1} can be seen as
a set of points moving in C starting and ending with p. Using t ∈ [0, 1] as the
third coordinate this can be seen as a braid with n+ 1 strings in C× [0, 1] ⊂ R3.

The generators and relations can be read off from the following picture.
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To show that these are the only relations we refer to [?].

The braid group has an action on the vector space H2(Bλ,C) via the connecting
isomorphisms that are induced by the loops in L. This gives a natural map

φ : Br ∼= Aut(H2(Bλ,C)) ∼= GLn(C)

The image of this map is called the monodromy group.

If we look at the point λ = (−|G| + 1, 1, . . . , 1) we know that the fiber is home-
omorphic to the resolution of the Kleinian singularity by theorem 6.5. The 2nd

homology has a distinguished basis generated by the n projective lines in the
resolutions, which are spheres. The intersection diagram of these spheres is a
Dynkin diagram and we can use this to define a bilinear form on H2. This gives
a Weyl group action on H2.

Theorem 6.19. The monodromy group is equal to the Weyl group and σi ∈ Br
is mapped to to the reflection si ∈ W associated to the ith node.

In other words the monodromy group is the Weyl group or Coxeter group of the
corresponding Dynkin diagram.

Proof. We illustrate this phenomenon in the An case for zero-dimensional fibers,
i.e when we look at f(Z) = (Z − µ0) · · · (Z − µn) instead of f(X, Y, Z) = XY −
(Z − µ0) · · · (Z − µn). In this case f−1 = {µ0, . . . , µn}, which can be seen as
the union of 0-dimensional spheres SSi = {µi, µi+1}. The transposition (ii + 1)
swaps µi and µi+1 so SSi changes orientation and becomes −SSi. The sphere
SSi−1 becomes {µi−1, µi+1} which is SSi−1 + SSi. Similarly the sphere SSi+1

becomes {µi, µi+2} which is SSi+1 + SSi. The other spheres don’t change so this
is precisely the action of the element si in the Weyl group.

For the full version in 2-dimensions we refer to Arnol’d’s book [?]
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6.5 Summary

Given a hypersurface singularity we have seen two ways to make it smooth.

First of all one can try to deform it and this gives rise to the notion of a versal
deformation, which is a parameter space Cµ that classifies all deformations of the
singularity. In this space we can look at the subspace of all parameters that give
smooth deformations.

This subspace is a connected space with a nontrivial fundamental group. This
implies that all smooth deformations are homeomorphic, but nontrivial paths give
rise to nontrivial homeomorphisms. To describe this we can look at the action of
the fundamental group on the homology of a chosen smooth deformation. This
gives a map from the fundamental group to the Automorphism group of the
homology and its image is called the monodromy group.

A second way of smoothening is resolving a singularity. There are many ways
to do this but a particularly interesting one is by looking at moduli spaces of
representations of a noncommutative algebra. The parameter space that governs
these moduli spaces is a space of characters Zk.

Again we can look at the subspace that corresponds to the smooth moduli spaces.
This is the complement of some hyperplanes in Zk and there is a group of reflec-
tions associated to these hyperplanes. This group is called the Weyl group.

In the case of Kleinian singularities, these two constructions are related. To
each resolution we can associate a deformation and if we complexify Zk we can
also see this as a deformation space. The Weyl group acts on this space and
identifies isomorphic deformations. If we divide out this action we get the versal
deformation.

Zk ⊗ C/W = Cµ

Finally, the monodromy group can be identified with the Weyl group.
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